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ABSTRACT

Geometric Representation Learning is a cornerstone of (unsupervised) learning and as such has been
widely applied across domains. In this work, we consider the problem of data-driven discovery of
system dynamics from spatial-temporal data. We propose to encode similarity structure in such data
via a spatial-temporal proximity graph; we then apply a range of manifold learning and deep-learning
based approaches to recover reduced order dynamics. We perform a systematic analysis of the learned
representations, comparing the different approaches’ ability to capture local and global geometric
features of the system dynamics.
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1 Introduction

The problem of learning the dynamics of a complex system from spatial-temporal data arises in applications across the
Sciences and Engineering. Often such data has a low-dimensional structure, usually induced by inherent symmetries in
the underlying system. In the dynamical systems literature, there is a growing body of work on learning dynamics from
data, e.g., [7, 6, 19]. A related body of literature considers the problem of identifying and characterizing low-dimensional
structure in data. Such methods range from classical manifold learning approaches [15, 24, 1] to more recent deep
learning based methods [21, 8, 12], which are typically applied to static (non-time-dependent) data. The question
of which method performs best in a given setting is highly data- and domain-dependent. In this work, we propose a
framework for investigating the utility of such geometric representation learning approaches for the recovery of reduced
order dynamics from spatial-temporal data. We consider data that is generated by physical systems that can be modeled
via classical Partial Differential Equations. Our framework recovers the system dynamics in a purely data-driven
manner, relying on a spatial-temporal proximity graph that encodes similarity structure in the data. We perform a
systematic qualitative and quantitative analysis of the different approaches with the aim of identifying methods that can
reliably recover the reduced order dynamics. Our analysis sheds light on the advantages and disadvantages of each
method with respect to their ability to capture local and global geometric features in spatial-temporal data.

2 Methods

2.1 Learning manifolds from data

In this work, we assume that data lies on or near a low-dimensional manifold, an assumption commonly known as
the manifold hypothesis. A large body of literature has evolved around the problem of reconstructing manifolds from
data (manifold learning). Formally, let X × (0, T ) ⊆ Rd+1 denote time series data measured in a physical system.
In practise, these measurements may be inaccurate (e.g., affected by noise) or incomplete (e.g., not representative
of the low-dimensional manifold). We want to learn a low-dimensional representation of the system’s dynamics,
which allows for characterizing its local and global geometric properties, characterized by a representation function
ϕ : X × (0, T ) → M, where M ⊂ Rd+1 (with dimension dim(M) ≪ d). To learn the representation function ϕ,
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we will utilize classical manifold learning [15, 24, 22], as well as deep learning based approaches that emerged more
recently in the literature [21, 12, 25]. In this section, we review common building blocks of such methods (Fig. 1).

Figure 1: Overview of our Representation Learning framework.

Similarity measure. A key component of every representation learning algorithm is a similarity measure imposed on
the data space, which provides a means for quantifying the similarity or dissimilarity of pairs of data points. In the
algorithms considered here, we encounter three types of similarity measures: (i) Euclidean distances, which compute
pairwise distances in the ambient space; (ii) geodesic distances, which are approximated from a proximity graph;
(iii) probabilistic distances, which are approximated via the likelihood that two nodes co-occur in a random walk on
a proximity graph. The choice of similarity measure is often not unique and represents a crucial design choice. A
key subroutine of many similarity measures is the construction of a proximity graph. Unlike in the typical manifold
learning setting, our graph is time-dependent, with nodes representing time points; the spatial discretization is encoded
in the node attributes. To construct a spatial-temporal proximity graph, nodes are connected by edges, if they are
k-nearest neighbors with respect to the similarity of the node attributes. The construction requires a careful choice of
the parameters k, which may require a grid search in practise. The actual similarities (i)-(iii) are estimated from the
proximity graph.

Embedding. Assuming access to a similarity measure, we can compute a point configuration on a low-dimensional
manifold. This process implicitly approximates a representation function ϕ : X × (0, T ) → M, which embeds the data
X into the target manifold M. In classical manifold learning methods, the point configuration is usually computed
by solving an eigenvalue problem. Shallow graph embedding are optimization-based, i.e., a loss function, which is
defined based on the chosen similarity measure, is optimized to compute a point configuration. In deep learning-based
embeddings, point configurations are trained via message-passing.

Evaluation. Once a point configuration is computed, we evaluate its utility. We propose to measure the quality of
a learned representation qualitatively via visualization and quantitatively via local and global Q-scores, which are
classical measures of embedding quality [17]. We defer all formal definitions to Apx. B.

2.2 Algorithms

In this section we briefly review representation learning algorithms considered in this study. A taxonomy is given in
Tab. 2 in Apx. A.

Classical Manifold Learning algorithms. Arguably the simplest approach for inferring low-dimensional structure in
data is via linear projections, e.g., using PCA. The most common approach for learning non-linear subspaces from data
are manifold learning algorithms. At the heart of those algorithms lies often an eigenvalue problem, where utilizing the
eigenvectors associated with the top eigenvalues leads to projections that preserve pairwise distances globally (global
methods), whereas projections based on the eigenvectors corresponding to the bottom eigenvalues preserves local
pairwise distances (local methods). Examples of global methods are ISOMAP [24] and MDS [15]. We further consider
LLE [22] as an example of a local method. Additionally we consider SE, which utilizes a probabilistic similarity
measure. More details on all three approaches can be found in Apx. A.

Deep Learning on Point Clouds. One of the first Representation Learning approaches that utilized probabilistic
similarity measures was DEEPWALK[21], a shallow node embedding method. More recently, approaches based on Graph
Neural Network (GNN) architectures have been utilized for graph embeddings. Here, we consider GRAPHSAGE [9],
GCN [12] and GAT [25]. GCN and GRAPHSAGE are early GNN architectures, which extend convolutional neural
networks to graph domains. GAT [25] implements the idea of graph attention, i.e., it translates the idea of transformers
to the graph setting. More details on all four approaches can be found in Apx. A.
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3 Experiments

3.1 Experimental setup

Case studies. The forced Korteweg–de Vries (fKdV) equation is an integrable non-linear PDE which is commonly used
to model the weakly non-linear flow problem [3, 2]. In this study we consider the fKdV equation under the assumption
of no disturbance where the equation can be written as [2]:

6ut + uxxx + (9u− 6(F − 1))ux = 0, (1)

where F is the depth-based Froude number. This model has been shown to exhibit both periodic travelling wave and
soliton dynamics [2].
The second model we consider is the Kuramoto–Sivashinksy equation (KS hereafter). The KS equation is a fourth-order
non-integrable nonlinear PDE that can be used to model the pattern formation for several physical systems [16]. The
viscous form of the equation can be written as

ut + uux + uxx + νuxxxx = 0, (2)

where ν is a coefficient of viscosity. The KS equation is a highly complex model which captures the dynamics of
spatio-temporal instabilities. The KS model also displays chaotic motion, and due to its non-integrability, gives rise to a
rich array of solution types depending on the value of the viscosity parameter ν. Most pertinent to this study, in the case
where ν = 16

71 the KS equation exhibits bursting dynamics [13].
In addition to the two models described above, we consider the Sine Gordon (SG) equation which is an integrable PDE.
The SG equation gained popularity for the ability to exhibit soliton solutions [11] and can be written as

utt − uxx + sinx = 0. (3)

Data generation. To obtain the dynamics data we simulated the fKdV and KS equation on a grid of 64 points on
a periodic domain of −π ≤ x ≤ π. The Froude number in fKdV was assumed to be F = 1.5. The initial wave
profiles are of the form u(x, 0) = A cos (kx+ ϕ) where we fix A = 0.5, k = 1 and ϕ = 1. The trajectory data is
collected from time t = 300 with ∆t = 0.1 yielding 1000 time points, which captures the dynamics well after the initial
transients have died out. Numerical integrations of the fKdV and KS equations were performed using an explicit RK
finite-difference scheme with a tolerance of 10−6 which we compared to a psuedo-spectral method to ensure accuracy.

For the SG equation, we used a grid of 64 points and solved the model using an adaptive 5th order exponential time
differencing method [28], resulting in 1362 time points.

Implementation and Training. We construct a time-dependent proximity graph, where nodes represent time points
with d-dimensional node attributes, which encode the spatial discretization. Connectivity is inferred via proximity,
i.e., each node is connected to its k nearest neighbors. We then utilize geometric representation learning to learn
low-dimensional node representations. We run the deep learning models for 1000 epochs using the SGD optimizer
having a learning rate of 10−2 with a negative sampling loss. For GCN, GRAPHSAGE and GAT we use two hidden
layers having 256 and 512 units. For both the classical and deep learning methods, we adopt the same graph construction
method using a k nearest neighbours approach setting k = 20. For ease of visualization, we show results in three
dimensions. Further implementation details and hyperparameter choices can be found in Apx. D.

3.2 Results

Table 1: Numerical results. Q-scores range from 0 (worst) to 1 (best).
fKdV KS SG

Qlocal Qglobal Kmax Qlocal Qglobal Kmax Qlocal Qglobal Kmax

PCA 0.55 0.91 3 0.99 0.95 3 0.79 0.94 80
MDS 0.75 0.95 214 0.96 0.94 6 0.74 0.93 19

ISOMAP 0.63 0.97 247 0.84 0.94 1 0.77 0.95 71
LLE 0.44 0.68 4 0.64 0.90 302 0.44 0.76 3
SE 0.61 0.84 201 0.76 0.72 5 0.48 0.79 23

DW 0.52 (0.06) 0.76 (0.06) 156.1 (33.96) 0.38 (0.02) 0.57 (0.01) 10.7 (0.90) 0.39 (0.03) 0.71 (0.03) 63.7 (11.2)
GCN 0.47 (0.06) 0.73 (0.05) 41.5 (56.2) 0.50 (0.043) 0.77 (0.07) 40.4 (107.9) 0.43 (0.03) 0.72 (0.05) 48.3 (16.3)
GS 0.37 (0.08) 0.70 (0.07) 91.9 (90.3) 0.82 (0.02) 0.81 (0.05) 4.0 (0.0) 0.35 (0.06) 0.66 (0.05) 30.0 (20.8)

GAT 0.43 (0.03) 0.68 (0.03) 17.2 (3.18) 0.79 (0.011) 0.84 (0.03) 4.0 (0.0) 0.45 (0.02) 0.73 (0.04) 19.8 (0.75)

Qualitative and Quantitative Analysis. A crucial aspect of any reduced-order dynamical model is to ensure the
geometry of the higher dimensional data is faithfully conserved, i.e., is capturing the underlying dynamics of the system.
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To compare the classical and deep learning based methods, we apply all approaches to the KS bursting dynamics data
and the travelling wave data from both the fKdV and SG equations. To probe the interpretability of the representations
we consider three dimensional reduced order dynamics and compare these to the representations obtained by a Fourier
projection on the two dominant modes of the raw data (see Fig. 2); a comprehensive comparison of all methods across
all three case studies can be found in Appendix E. We also quantitatively measure the quality of the reduced order
dynamics using the local and global Q-score metrics, which is presented in Table 1. For all the deep learning models we
run 10 different initializations with different seed numbers giving the mean and standard deviation values, where the
latter is the value within the parenthesis in Table 1.

Figure 2: Three-dimensional visualizations of the reduced order dynamics (top row: forced Korteweg–de Vries (fKdV), middle row:
Kuramoto–Sivashinksy (KS), bottom row: Sine Gordon (SG)). Left: Ground truth dynamics in Fourier space. Right: Geometric
representations learned with top two classical and top deep-learning based approach.

Characterizing local and global geometric features. Comparing the learned dynamics both qualitatively and
quantitatively, we notice that PCA and MDS perform best with respect to local and global Q-scores, a result that
may indicate that variation in the data can be captured well with linear subspaces. ISOMAP, the third global manifold
learning approach tested here, performs competitively; the local methods (LLE and SE) perform low with respect to all
evaluation criteria. This suggest that a successful approach needs to accurately capture both similarity between nearby
points and dissimilarity between far distant points. The inability of random-walk based similarity measures to capture
global pairwise distances may stem from approximation errors inherent to their probabilistic nature, but further analysis
is needed to explain the performance trade-offs between classical and deep learning based methods.

4 Impact statement

We have explored the utility of geometric representation learning approaches for recovering reduced-order dynamics in
spatial-temporal data. Our systematic quantitative and qualitative study of representation trade-offs suggests that classical
manifold learning approaches appear to be superior to deep learning approaches. In particular, simple approaches, such
as PCA and MDS seem to extract the underlying dynamics best and also yield interpretable representations. Our analysis
utilized a spatial-temporal proximity graph, which allows for extending classical representation learning approaches
from static to dynamic data. We aim to extend our study to a broader range of case studies and representation learning
methods with the aim of understanding trade-offs and commonalities between these approaches more comprehensively.
We further aim to investigate the effects of non-uniform sampling to gain better insight into the applicability of the
tested approaches to real-world data.
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A Methods for Geometric Representation Learning

Table 2: Overview of Geometric Representation Learning methods.

Algorithm Type Geometry preserved Method Embedding Dimension

PCA spectral global proximity top eigenvalues learnt

MDS spectral global isometry top eigenvalues learnt

ISOMAP spectral global isometry top eigenvalues learnt

LLE spectral conformal, local poximity bottom eigenvalues hyperparameter

SE shallow local proximity probabilistic hyperparameter

DEEPWALK shallow local proximity probabilistic hyperparameter

GCN deep local proximity probabilistic hyperparameter

GRAPHSAGE deep local proximity probabilistic hyperparameter

GAT deep local proximity probabilistic hyperparameter

The methods considered in this study identify geometric structure in a purely data-driven manner, without prior
characterization of the data’s geometry. We note that there is a complementary body of literature, which provides tools
for characterizing data geometry intrinsically, independent of learned data representations [5, 18, 27].

A.1 Classical Manifold Learning algorithms

Multi-Dimensional Scaling (MDS). Multi-dimensional scaling is a popular method for Representation Learning in
both Euclidean (cMDS [15]) and non-Euclidean spaces (gMDS [4]). It computes a map ϕ by directly minimizing the
representation error, i.e., the difference between pairwise distances dX (x, y) in the data space and the distances of the
corresponding manifold representations dM̃(ϕ(x), ϕ(y)) over all pairs x, y ∈ X .

Isometric Feature Mapping (Isomap). Isomap [24] is an extension of of MDS, which approximates geodesic distances
via shortest paths on the constructed proximity graph and then performs an MDS step.

Locally Linear Embeddings (LLE). The focus of local manifold learning methods, such as Locally Linear Embeddings
(LLE) [22], is on preserving local similarity structure. A local similarity matrix is constructed with respect to the k
nearest neighbors of a data point from which local structure is extracted using spectral decomposition.

Stochastic Neighbor Embeddings (SE). SE [10] aims to preserve the local neighborhood stucture of a point from data
space to embedding space. Similarities are measured probabilistically.

A.2 Deep Learning approaches

DeepWalk. DeepWalk [21] is an early approach for shallow graph embeddings. It learns a latent space representation
of nodes based utilizing a random walk based similarity measure.

Graph Convolutional Networks and GraphSage. One of the early and still widely popular GNN architectures are
GCN [12] and GraphSage [9], both of which extend the idea of convolutional neural networks to the graph domain.
Previous applications of graph convolutions to point clouds were considered in [26].

Graph Attention. Graph attention, which translates the idea of transformers to Graph Neural Networks, was first
proposed by [25]. The most popular variants of Graph Attention Networks are based on this architecture.

B Evaluation Representation Quality

Q-scores, originally introduced by [17], are ranking losses which evaluate how well pairwise distances are preserved
locally and globally by an embedding ϕ. Q-scores are computed with respect to a co-ranking matrix Q = {qkl}k,l∈[N ],
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defined by

qkl := |{(k, l) : µij = k, νij = l}|
µij := |{k : dX (xi, xk) < dX (xi, xj) and {dX (xi, xk) = dX (xi, xj) if 1 ≤ k < j ≤ N}}|
νij := |{k : dM(xi, xk) < dM(ϕ(xi), ϕ(xj)), {dM(ϕ(xi), ϕ(xk)) = dM(ϕ(xi), ϕ(xj))}1≤k<j≤N |

As usual, |I|, denotes the cardinality of a set I . We define Q-curves as

Q(ϕ,K) :=
1

KN

∑
(k,l)∈IK

qkl , (4)

which are computed over blocks IK := {1, . . . ,K} × {1, . . . ,K} of the co-ranking matrix. Note that we only need to
consider the upper half of IK , due to symmetry. With respect to Q-curves, we compute local and global Q-scores of ϕ:

Kmax := argmaxK

(
Q(ϕ,K)− K

N − 1

)
(5)

Qlocal(ϕ) :=
1

Kmax

Kmax∑
K=1

Q(ϕ,K) (6)

Qglobal(ϕ) :=
1

N −Kmax

N−1∑
K=Kmax

Q(ϕ,K) . (7)

Here, the local and global regimes are distinguished by a split of the Q-curve at Kmax. Qlocal and Qglobal attain values
from 0 (worst) to 1 (best). In practise to obtain these metric values we first compute the co-ranking matrix Q which is
based on the apparoach used in [14].

C Implementation of Classical Manifold Learning

All of the classical models considered in this study (LLE, ISOMAP, SPECTRAL EMBEDDING, MDS, PCA) were
implemented using the SCIKIT-LEARN python library [20]. The proximity graph was constructed using a k nearest
neighbours approach setting k = 20.

D Graph based Deep Learning model architecture and parameters

Table 3: Parameters used in GCN, GRAPHSAGE and GAT methods where di is the input dimension and dz is the latent dimension.
The “Dimension” column describes the dimension of each layer and the “Activation” column describes the activation functions
between layers. The “Epochs” column describes the number of epochs used for training.

Method Dimension Activations Optimizer Learning Rate Epochs

GCN di : 256 : 512 : dz ReLU: ReLU SGD 10−2 1000

GRAPHSAGE di : 256 : 512 : dz ReLU : ReLU SGD 10−2 1000

GAT di : 256 : 512 : dz ReLU : ReLU SGD 10−2 1000

For GCN, GRAPHSAGE and GAT we choose a fixed walk length of 5 and use a single negative sample. For GAT we
use a single attention head. The parameters of the GNN based methods are given in Table 3. Through our experiments
we found that the SGD optimizer yielded more accurate results compared to Adam and found the commonly used
learning rate of 10−2 to work well for our applications. The DEEPWALK method was implemented via KATECLUB
package [23] which we ran for 1000 epochs with a walk length of 50 and a window size of 5. We found that increasing
the walk length yielded a better metric score but was more computationally expensive. We did not observe a significant
increase in the performance for walk lengths greater than 50.

E Additional Experimental Results
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Figure 3: Three-dimensional visualizations of the reduced order dynamics for the KS equation for all of the techniques presented in
this study.

PCA ISOMAP SE

LLE MDS DW

GCN GS GAT

Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z3

Z3

Z3

Z3

Z3

Z3

Z3

Z3

Z3

Figure 4: Three-dimensional visualizations of the reduced order dynamics for the fKdV equation for all of the techniques presented
in this study.
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Figure 5: Three-dimensional visualizations of the reduced order dynamics for the SG equation for all of the techniques presented in
this study.
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