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ABSTRACT

This work introduces a cost-effective emulator for groundwater flow modeling using deep neural
operators (DeepONet). We address the computational challenges in traditional groundwater modeling
by proposing a novel approach that efficiently and accurately forecasts aquifer responses. The model
demonstrates excellent performance across various scenarios, including time-dependent and nonlinear
systems.
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1 Introduction

Traditional numerical models, such as MODFLOW [6], have been extensively used for simulating groundwater flows.
However, these models often face computational challenges, especially when dealing with large-scale or highly nonlinear
systems [2, 3, 9].

Recent progress in deep learning has introduced innovative approaches for functional approximation, making a
significant impact in various fields including fluid dynamics and subsurface flows [4, 11, 5]. Deep convolutional neural
networks (CNNs) have been successfully employed as surrogate models in dynamic multiphase flow problems [12, 10].
However, these methods have limitations, particularly in their dependency on lattice grid structures and the need for
retraining for different mesh resolutions [14].

In response to these challenges, deep operator networks (DeepONets) have emerged as a promising solution. Introduced
by Lu et al. [8], DeepONets leverage the universal approximation theorem for operators [1], offering a framework that
learns mappings between infinite-dimensional Banach spaces. This approach enables the solution evaluation at any
arbitrary spatial and temporal location [7].
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This study introduces a deep neural operator-based approach as a surrogate model for groundwater flow, offering a
computationally efficient alternative to standard numerical methods. We aim to demonstrate its applicability through
various experimental setups, addressing both forward and inverse problems in subsurface flows.

2 Problem Statement and Methodology

The movement of groundwater is governed by a PDE that combines Darcy’s Law and the principle of mass conservation.
Traditional methods like the finite difference apporach based MODFLOW have been extensively used but face limitations
in handling large-scale, complex simulations efficiently [6, 3].

Deep neural operators learn complex, non-linear functions in spaces of unbounded dimensions, a concept discussed in
[8] and [1], offering an alternative for groundwater level predictions. The traditioanl DeepONet framework comprises
two deep neural networks: the branch network and the trunk network. The branch network processes the input function,
denoted as u, at fixed sensor points {x1, x2, . . . , xm}. The trunk network encodes the spatiotemporal coordinates
ζ = {xi, yi, ti}, at which the operator’s output is evaluated for loss calculation. This learning mechanism operates
under a general paradigm where the sensor points (xi

m
i=1) for u evaluations do not require uniform spacing, but they

must maintain consistency across evaluations. The branch network inputs [u(x1), u(x2), . . . , u(xm)]T and outputs
[b1, b2, . . . , bq]

T ∈ Rq, whereas the Trunk Network inputs ζ and outputs [t1, t2, . . . , tq]T ∈ Rq. The outputs of these
subnetworks are integrated via a dot product, yielding the final output. An additional bias term b0 ∈ R is incorporated
to enhance expressiveness, resulting in the approximation G(u)(ζ) ≈

∑q
i=k bktk + b0. The trainable parameters θ are

optimized by minimizing a mean square error loss function.

The study comprises five computational experiments, each addressing a unique aspect of groundwater modeling:

• E1: Learning the forward mapping from conductivity fields to hydraulic heads for a stationary well scenario.
• E2: Expanding to multiple input functions, including various well locations and varying conductivity fields.
• E3: Undertaking inverse modeling to estimate hydraulic conductivity from observed hydraulic heads.
• E4: Modeling time-dependent problems with changing pumping rates.
• E5: Solving nonlinear problems with head-dependent boundary conditions.

Each experiment demonstrates DeepONet’s adaptability and effectiveness in addressing various challenges in ground-
water modeling. This work presents the results of the first three experiments. For details on the remaining experiments,
the readers are referred to our published work [13].

3 Results

In this section, we demonstrate through experiments E1, E2 and E3 that DeepONet can be employed for approximating
a range of groundwater flow simulation problems, accurately and efficiently.

In Experiment E1, DeepONet is tasked to learn the mapping from hydraulic conductivity to the hydraulic head in a
scenario with a fixed well location. The model achieved a mean square error (MSE) of 1.8 × 10−5 during training
and 2.5× 10−4 in testing over Ntrain = 1000 and Ntest = 200 samples respectively. Training took 283 seconds for
24, 600 iterations. Figure 1 showcases the model’s capability to predict the hydraulic head around the well accurately
for a conductivity field unseen during training. DeepONet accurately predicts the pressure buildup and sharp increase
of the hydraulic head.

Figure 1: Hydraulic head predictions for two test cases with unseen conductivity fields in Experiment E1.
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In Experiment E2, we addressed the limitations of the vanilla DeepONet in scenarios with varying well locations.
The vanilla architecture struggled to accurately capture sharp gradients near the pumping wells when the position of
the well was changed for each sample across training and testing dataset. This was evident as the model produced
either inaccurate predictions of the location of the pressure front or overly smoothed gradients near the source terms.
Multiple approaches to encode the well’s location in the branch network were explored, including Cartesian coordinates
and Gaussian functions centered at the well, but these methods did not yield satisfactory results. It became clear that
informing the trunk network about the well location was crucial for accurate learning. The incorporation of well
coordinates into the trunk network input improved the model’s ability to localize the basis functions effectively around
the wells.

However, in more complex scenarios involving multiple wells or non-point features, this method proves impractical.
Consequently, we adopted a novel approach, illustrated in Figure 2, that interlinks the hidden layers of the branch and
the trunk networks. In this design, we encode the well location as a binary map, which is then concatenated to the
hydraulic conductivity field in the branch network, and outputs from the branch network’s pooling layers are integrated
with those from each layer of the trunk network. The output from the branch network undergoes flattening and is
processed through a dense neural network with a Sigmoid activation function. The resultant vector, interpretable as a
set of coefficients, matches the dimensionality of the trunk network’s corresponding hidden layer, allowing for their
combination via an inner product. This combined output then advances through subsequent layers of both the trunk and
branch networks, following reshaping and concatenation with the pooling layer’s output. Our findings show that this
architecture provides precise predictions of the hydraulic head’s steep gradients in Experiment E2, an improvement
over the more generalized predictions of the vanilla DeepONet.

Figure 2: Schematic of the novel DeepONet architecture proposed for experiment E2.

Figure 3 demonstrates the results obtained using the proposed DeepONet architecture, where the model accurately
captures sharp gradients the well locations, that are typically situated at distinct locations for each training and testing
sample. The training process for this experiment took approximately 324 seconds, and the error metrics on the training
and testing datasets were 6.6 × 10−5 and 2.6 × 10−4, respectively. Extended analyses included scenarios with two
randomly located pumping wells, as described in [13], where the proposed architecture continued to demonstrate
superior performance.
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Figure 3: Hydraulic head predictions with varying well locations using vanilla and modified DeepONet architectures in
Experiment E2.

Finally, Experiment E3 delves into solving inverse problems, where DeepONet estimates the conductivity field based
on known hydraulic head information. The operator network demonstrates trustworthy predictions, with a MSE test
error 1.46× 10−2 and a standard deviation 5.3× 10−3, obtained by conducting five experiments. Incorporating 20% of
the hydraulic conductivity data as supplementary input led to a 29.5% reduction in the MSE error for test samples. This
improvement was even more pronounced, reaching 37.6%, with 40% of hydraulic conductivity data as additional input.
We also observed that providing the network with observations of hydraulic head at different time intervals further
refined the predictions.

Figure 4 displays a test case that highlights the model’s proficiency in predicting the conductivity field from hydraulic
head data. Specifically, the first column shows the unknown hydraulic conductivity field and the location of sparse
observations used as additional input. The second column presents the input hydraulic head. The third column depicts
the outcomes of the simulated inverse procedure, while the final column illustrates the hydraulic head corresponding to
the predicted conductivity, as calculated using a conventional solver.

It is important to consider the ill-posed nature of this problem, particularly when based on sparse hydraulic head
observations. Multiple conductivity maps could lead to an identical set of sparse Hydraulic head observations, a
likelihood that increases with greater sparsity. Therefore, the results should be interpreted within this context.

Figure 4: Inverse analysis in Experiment E3: Estimating conductivity fields from hydraulic head observations.

4 Summary and Discussion

The DeepONet framework has shown remarkable capabilities in simulating groundwater flow. Our experiments covered
scenarios with fixed and variable pumping well locations. The integration of the branch network with the trunk network
was crucial in predicting solutions for variable well locations. This novel approach allowed for greater flexibility and
accuracy, overcoming limitations in the model’s original design.

While the current study primarily focused on single and two-well configurations, future work aims to expand this to
multiple wells and to scenarios with varying abstraction rates, aquifer geometries, and interactions with surface water
systems. The integration of multi-fidelity and multi-modality data sources also presents an exciting frontier, considering
the varied and sparse nature of real-world data.
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