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ABSTRACT

During the last decade, machine learning methods enabled the accurate prediction of properties for
molecular and solid-state systems at various scales. In particular, Gaussian process (GP) models
for modeling potential energy surfaces allowed accurate simulation of the energetics and dynamics
of molecules and materials at different scales using moderate amounts of high-cost DFT training
data. One of the current limitations hindering the wider applicability of GP models to larger systems
is the computational cost associated with the training of complex multi-parametric GP models. In
this work, we present a scalable multi-parametric GP model for atomic forces and energies. The
presented modeling framework enables training of a wide range of variational GP models, possibly
with millions of parameters. We illustrate the proposed methodology by training the collection of the
variational GP models for atomic forces for a recently synthesized large molecular crystal system
with dynamic gearing parts. We demonstrate that the proposed variational GP model can provide
more compact representation of the data with respect to the exact GP models without loss of accuracy.
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1 Introduction

The computational discovery of materials is now a reality due to the availability of high-throughput calculations in
conjunction with fast and efficient machine learning techniques. Gaussian process (GP) machine learning (ML) models
have been proven to provide excellent fitting quality for the prediction of the local and global, tensorial and scalar
properties of materials, along with accurate estimates of uncertainties [2]. However, due to the computational costs
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associated with training complex GP models, only simple Gaussian process models are routinely employed in material
science. The complexity of the currently used models for predictions of local atomic properties such as forces is limited
to low-parametric kernels, which severely limits their representation capacity. Within the field of material science,
this means that current models are limited to the accurate treatment of systems with relatively simple dynamics and a
limited diversity of atomic environments.

Building on top of our recent works [12, 11], here we present a methodological framework that enables the variational
training of scalable multi-parametric Gaussian process models and apply it to fit the atomic forces of molecular crystal.
The proposed framework uses the Smooth Overlap of Atomic Positions (SOAP) invariant molecular descriptors [1] as
an input set of features and employs the recently proposed predictive log-likelihood approximation to the high-cost
marginal log-likelihood objective [5]. Additionally, we propose training a collection of GP models based on symmetries
within a molecular crystal, as illustrated in Fig. 1 (a), which allows us to achieve scalability without sacrificing accuracy.
We illustrate the variational GP modeling framework by fitting the atomic forces for a recently synthesized molecular
crystal system with dynamic gearing parts [6]. We show that variational GP models for atomic forces can provide
similar accuracy to the exact GP models, however, using the number of variationally learned high-dimensional inducing
points, which is only half of the total number of training data points.

2 Scalable variational Gaussian processes

Gaussian processes (GPs) offer rich non-parametric models for regression and classification tasks [14]. GP is fully
specified by a mean function µ : Rd → R and kernel or covariance function k : Rd × Rd → R. Choosing a different
kernel and mean allows to encode the prior information on the process that generated the data. A typical example of
a kernel function that we will use in this work is the scaled Matern kernel with Automatic Relevance Determination
(ARD) of features [14]:
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weighted distance between points, θs > 0 is a scale parameter, θi > 0 are the lengthscale parameters, and in this work
we use ν = 2.5. This type of kernel automatically learns to assign shorter lengthscales over the irrelevant dimensions in
a descriptor space. As an input set of features in this work, we employ the SOAP descriptors and their derivatives with
respects to atomic positions[1], which were computed by the LIBRASCAL software library [13].

Typically, all the parameters of GP can be jointly learned with backpropagation procedure by maximizing the marginal
likelihood objective

p(y | X) =

∫
p
(
y | f , σ2

obs

)
p(f | X) df , (2)

where y is the vector with real-valued targets, f are the latent function values and X = {xi}Ni=1 are the N input
locations with xi ∈ Rd. Unfortunately, expression (2) is often too expensive to compute when the number of training
samples N is becoming large, since computation of the inverse of the kernel matrix K−1

NN scales as O
(
N3

)
, where

KNN = k(X,X). This motivates the design of the approximate methods allowing for scalable GP inference.

Inducing point methods [9], [10], [3] offer a scalable extension for the exact GPs, allowing to train the GP models using
a large number of points, when the evaluation of the exact marginal likelihood (2) can be infeasible or when compact
representation of the dataset is desirable. In our previous work [11] we compared the impact various training objectives
have on the accuracy of uncertainty estimates of potential energies for a synthetic dataset of small molecules. In this
work, based on our previous benchmarks for small molecules, we employ the Evidence Lower BOund (ELBO) based
predictive log-likelihood approximation to the high-cost marginal log-likelihood objective [5].

The main idea behind the inducing point methods is to replace the large kernel matrix KNN with its low rank
approximation KMM by introducing the latent variables u ∈ RM which are evaluated over the set of M inducing
points Z = {zm}Mm=1, with each zm ∈ Rd. Inducing points locations may be set to be learnable variational parameters
of the model. In this scenario the GP prior in (2) is augmented by

p(f | X) → p(f | u,X,Z)p(u | Z). (3)

Using the Jensen’s inequality we can lower bound the log joint density over the targets and inducing variables

log p(y,u | X,Z) = log

∫
p(y | f)p(f | u)p(u) df

≥ Ep(f |u)[log p(y | f) + log p(u)].

(4)
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Figure 1: (a) The scalable Gaussian process (GP) framework for training and prediction of the local and global
properties: atomic forces and structural energies. Depending on the complexity of local atomic environments, the
complexity and representative power of each force or energy, GP model can be selected accordingly. The ensemble
approach for training different GP models for different atomic groups enables further scaling to larger molecular
systems, such as the molecular crystal system in (a). (b) Molecular crystal system with dynamic gearing parts. Accurate
modeling of atomic forces is necessary for simulation of dynamics for such systems and is crucial for understanding the
functional property (gearing motions of rings) in the solid-state system.

Finally, by introducing the variational distribution q(u) over the inducing variables, we come up with the following
lower bounds for the evidence p(y) [4]

log p(y) ≥ Eq(u)[log p(y,u | X,Z)] +H[q(u)]

≥ Eq(u)

[
Ep(f |u)[log p(y | f)]

]
−KL[q(u)∥p(u)],

(5)

where H[q(u)] is an entropy term.

In the most common scenario, the variational distribution over the inducing variables u is given by the multivariate
normal q(u) = N (m,S) parametrized by mean vector m ∈ RM and covariance matrix S ∈ RM×M . Depending on
the desired expressivity of the GP model and complexity of the data, we can choose to learn either the full positive
semidefinite symmetric covariance matrix with non-zero non-diagonal elements, use the mean-field approximation by
restricting S to be diagonal, or even collapse the multivariate normal q(u) to a Dirac delta distribution by taking the
formal limit S → 0. In the examples in this work, we use full covariance matrix representation.

The predictive log-likelihood objective, proposed in [5], and which we previously applied to fit energies in a simple
molecular dataset [11], aims to improve the uncertainty estimates of the latent function, and is given by

LPLL =

N∑
i=1

logEq(fi) [p (yi | fi)]− βKL[q(u)∥p(u)]. (6)

For the above predictive log-likelihood objective, we can calculate the derivatives efficiently and perform the training in
a “black box” manner [8]. In the above approximation of ELBO, the accuracy term, which ensures fitness to the training
data, is tightly balanced by the regularization term, which additionally makes the algorithm search for variational
distributions with higher entropy, as can be seen from the first bound in (5). It is worth noting that the KL divergence
term may also be replaced by the more general Rényi divergence [7], thus allowing for wider classes of variational
distributions to be explored.

3 Experiments

In this section, we provide numerical results illustrating the fitting quality of the stochastic variational GP (SVGP)
models and compare the variational modeling framework with the exact one. We provide numerical results for fitting
the atomic forces of large crystalline system with dynamic gearing parts [6]. Based on the symmetries of local atomic
environments within the molecular crystal, we split the 528 atoms of the molecular crystal within a unit cell into 14
groups and trained 14 SVGP and exact GP models as illustrated in Fig. 1. For each SVGP model, we initialized
500 inducing points by randomly sampling the total of 1000 training points for each atomic group. To compare the
performance of SVGP models trained with predictive log-likelihood objective (6) and exact GPs trained with objective
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(a) (b)

Figure 2: (a) Absolute error for atomic forces on all atoms predicted by the set of SVGP models, each parametrized
with 500 inducing points and trained on 1000 points, and for two exact GP models trained with 500 and 1000 points.
(b) Distributions of the normalized variance parameter learned by the SVGP and exact GP models.

(2), we additionally trained two sets of exact GP models: with 500 and 1000 force samples. The feature vectors that
describe the local chemical environment of each atom and their derivatives with respect to atomic positions were
represented by a 1200-dimensional SOAP vectors [1] that we used as input feature vectors.

To train the SVGP and exact GP models, we generated the training dataset by performing the 5000 steps of ab
initio molecular dynamics simulation with density functional theory (DFT) with timestep of 1 ps at high temperature
T = 2000 K. Calculations were carried out using the Perdue-Burke Ernzerhof (PBE) exchange-correlation functional
and the projector-augmented wave (PAW) method as implemented in the Vienna ab initio Simulation Package (VASP).
A plane wave basis set with an energy cutoff of 500 eV was used. To evaluate the performance of the SVGP and exact
GP models, as a test trajectory, we took the trajectory and corresponding atomic forces of correlated barrier crossing by
all the gears, see Fig. 1 (b), which we used in the paper [6] to estimate the rotational barriers of gears.

In Fig. 2 we provide numerical results for three modeling settings: (1) collection of 14 SVGP models, each with 500
inducing points and trained on 1000 points; (2) collection of 14 exact GP models trained on 1000 points; (3) collection
of 14 exact GP models trained on 500 points. The inducing points of SVGP models were initialized by randomly
sampling 500 points out of 1000 training data points. The SVGP and exact GP models were then trained similarly
with backpropagation by optimizing the objective functions (2) and (6) respectively. Each model was trained by 1000
iterations with 0.1 learning rate step, followed by tuning 1000 iterations with a reduced learning rate of 0.01.

In Fig. 2 (a) we provide the absolute errors of the predicted atomic forces for three modeling setups. Despite the fact
that SVGP for prediction uses 500 variationally learned inducing points, absolute errors for the given test dataset for the
SVGP models are on par or even tend to be slightly lower than the absolute errors for the exact GP models. This could
be related to the fact that each SVGP model has additional 500× 1200 = 600, 000 variationally learned parameters
with respect to the exact GP model, allowing to find more optimal representation of the dataset. In Fig. 2 (b), we
provide the histogram of the learned GP variance parameter for all atoms within a unit cell. Distribution of the variance
parameters differ significantly for the SVGP and exact GP models, with less variability of the variance parameters for
SVGP models with respect to the exact GP models trained on 1000 points.

To conclude, in this work we proposed to use a novel variational GP framework for fitting the molecular properties such
as atomic forces and energies [11]. We demonstrated the applicability of SVGP method by fitting atomic forces for
large molecular crystal system and compared it to the exact GPs. Based on the presented results, in the following, we
will apply the presented SVGP modeling framework to simulate the high-cost ring-polymer molecular dynamics with
the inherited accuracy of the training DFT data. This will enable simulations of molecular crystals with rotatory gears
containing up to several thousand atoms within a supercell at timescales up to several nanoseconds with an accuracy of
high-cost ab initio calculations.
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