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ABSTRACT

This paper focuses on a research question: How do we infer Hamiltonian vector fields under
uncertainty from data? One promising approach is a Gaussian process (GP) that can consider
the uncertainty involved in data. Several GP models have recently incorporated the symplectic
structure, allowing the accurate prediction of Hamiltonian vector fields; however, the predictive
variance has not been adequately analyzed. This paper experimentally confirms that GP models
encoding the symplectic structure can appropriately estimate predictive variances for Hamiltonian
vector fields. Also, the experiments demonstrate the robustness of the GP models in simulating
Hamiltonian systems in out-of-distribution settings.
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1 Introduction

Modeling, simulating, and forecasting physical phenomena are fundamental in engineering and physical sciences. There
is great interest in a machine learning approach for inferring physical dynamics from data, which is advantageous in
that it allows for obtaining physical dynamics without explicitly designing mathematical models. Many real-world
systems can be described by ordinary differential equations (ODEs), the dynamics of which are defined by vector fields
in a state space (also called a phase space). Many previous works have estimated ODE dynamics by modeling the
vector fields using machine learning methods, such as neural networks [3]. The Hamiltonian neural network (HNN) [4]
has been designed based on Hamilton’s equations, allowing the learning of vector fields that satisfy energy conservation
laws. This idea has also been introduced in probabilistic modeling, in which the Hamiltonian is modeled by Gaussian
processes (GPs) [1, 6, 8]. The GP models allow one to learn Hamiltonian dynamics from noisy and sparse data.

One advantage of GP models is the ability to evaluate predictive variances [5]; however, the prior works have not
thoroughly analyzed them in the experiments on Hamiltonian systems [1, 6, 8]. This paper provides a numerical analysis
of predictive variances when inferring Hamiltonian vector fields via the GP models based on Hamiltonian mechanics.
The experiments on two simple physical systems show that the GP models can 1) accurately predict Hamiltonian vector
fields in low-data settings than HNN and 2) evaluate predictive variances, which appropriately supports prediction errors.
In addition, we observe that the GP models improved the predictive performance, especially in out-of-distribution
settings: Regions on the phase space where the training samples are extremely small. Thus, we consider the problem of
simulating state trajectories in the out-of-distribution settings. These experiments demonstrate that GP models are more
robust than HNN in such situations.

2 Symplectic Gaussian Processes

Problem setting. The continuous-time evolution of Hamiltonian systems is described in phase space, that is, the
product space of generalized coordinates xq = (xq

1, . . . , x
q
M ) and generalized momenta xp = (xp

1 , . . . , x
p
M ), where
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M is the degree of freedom. Let x = (xq,xp) ∈ RD be a state of the system, where D = 2M . Let ẋ ∈ RD denote
a time-derivative of the state x. We assume that the noisy observation ẏ ∈ RD of ẋ is available. Suppose that we
have N samples {(xn, ẏn) | n = 1, . . . , N}. Our aim is to learn a vector field f(x) : RD → RD that can predict the
time-derivative for arbitrary state x, as ẋ = f(x).

Model. We briefly describe a Gaussian process (GP) model that is designed based on the theory of Hamiltonian
mechanics [6, 1, 8], which we call a symplectic Gaussian process (SGP). In the Hamiltonian formalism, the dynamics is
totally defined by a Hamiltonian H(x) : RD → R, which represents a total energy of the system. In SGP, the unknown
Hamiltonian is assumed to be a single-output GP with zero mean. According to Hamilton’s equations, the vector field
f(x) is given by

f(x) = LH(x), where H(x) ∼ GP(0, γ(x,x′)). (1)

Here, L := S∇ is a differential operator from Hamilton’s equations, and γ(x,x′) : RD × RD → R is a covariance
function. We can use any differentiable kernel such as the ARD (Automatic Relevance Determination) Gaussian
kernel [5] as the covariance function. S ∈ RD×D is the skew-symmetric matrix, represented by

S =

(
O I
−I O

)
, (2)

where I is the identity matrix, and O is the zero matrix. Since L is a linear operator, the derivative of a GP is again a
GP [7]; thus, f(x) (1) can be written by a multi-output GP,

f(x) ∼ GP(0,K(x,x′)), (3)

where 0 is a column vector of 0’s, and K(x,x′) : RD × RD → RD×D is the matrix-valued covariance function,
represented by

K(x,x′) = LL⊤γ(x,x′) = S∇2S⊤γ(x,x′). (4)

Here, ∇2 is the Hessian operator. A realization of f(x) from (3) satisfies the symplectic structure important for
modeling energy-conserving dynamics. We can use the SGP as the prior distribution to learn the Hamiltonian vector
fields from data.

Inference. The posterior of SGP can be derived in a similar way to the vanilla GP. If the observation model of ẏ is a
Gaussian distribution with a variance of σ2, then the posterior f∗(x) is given by

f∗(x) ∼ GP (m∗(x),K∗(x,x′)) , (5)

where m∗(x) : RD → RD and K∗(x,x′) : RD × RD → RD×D are the mean function and the covariance function
for f∗(x), represented by

m∗(x) = K(x,X)
[
K(X,X) + σ2I

]−1
Ẏ, (6)

K∗(x,x′) = K(x,x′)−K(x,X)
[
K(X,X) + σ2I

]−1
K(X,x′), (7)

respectively. Here, Ẏ = (ẏ1, . . . , ẏN )⊤ ∈ RDN , and K(x,X) ∈ RD×DN denotes the covariance matrix evaluated at
all pairs of training points and an arbitrary test point x, and similarly for the other matrices K(X,X) ∈ RDN×DN and
K(X,x′) ∈ RDN×D, where X = {xn | n = 1, . . . , N}. One can predict the time-derivative for x using the posterior
mean (6) and evaluate the predictive variance (7). The noise variance σ2 and the hyperparameters of the kernel γ(x,x′)

can be estimated by maximizing the marginal likelihood of Ẏ, represented by p(Ẏ) = N (0,K(X,X) + σ2I).

3 Experiments

Data. We compared the SGP with the HNN using two physical systems: Spring and pendulum. The Hamiltonian of
the spring is H(x) = 1

2k(x
q)2 + (xp)2

2m , where k is the spring constant and m is the mass constant. The Hamiltonian

of the pendulum is H(x) = 2mgl(1 − cosxq) + l2(xp)2

2m , where we denote the gravitational constant by g and the
length of the pendulum by l. In the experiments, we set g = 3 and k = m = l = 1. We obtained N = {40, 60, 100}
samples of (xn, ẏn), where the states {xn} were generated with total energies uniformly distributed across a predefined
range [1.3, 2.0]. The observations {ẏn} were obtained by adding a Gaussian noise with variance σ2 = 0.1 to the
time-derivatives from the Hamilton’s equation: ẋn = LH(xn). We randomly split the samples and used 80% for
training and 20% for validation. We conducted the experiments five times by resampling the training and validation sets.

Task 1: Predicting vector fields. In the test phase, we prepared 15 × 15 regular grid points {x∗
i | i =

1, . . . , I} on a two-dimensional phase space defined by [−3.2, 3.2]2, where I is the number of test points.

2



Learning Hamiltonian dynamics Under Uncertainty via Symplectic GPs

Table 1: MSE and standard deviation for the predicted vector fields. Bold font indicates statistically significant
differences between SGP and HNN (a paired t-test) at level of P < 0.05.

Spring Pendulum

Sample size 40 60 100 40 60 100

HNN 0.600±0.098 0.476±0.048 0.368±0.034 2.253±0.107 1.996±0.099 1.863±0.089
SGP 0.041±0.053 0.040±0.021 0.011±0.001 0.323±0.161 0.237±0.056 0.200±0.030

Figure 2: Prediction results of HNN and SGP. The gray dots represent training data points.

Figure 1: Pendulum dynamics.

We evaluated performance at the test points by comparing the predicted vector fields
{ẋpred

i } with the ground truth {ẋtrue
i }. Figure 1 shows the ground truth for the

pendulum. The evaluation metric is the mean squared error (MSE), 1
I

∑I
i=1(∥ ẋpred

i −
ẋtrue
i ∥2), where ∥ · ∥2 is the Euclidean norm. Table 1 shows the MSE and standard

deviation of the vector fields predicted by HNN and SGP. This result shows that SGP
yields a better prediction of vector fields than HNN in all the cases. As expected, SGP
proves to be particularly effective when the sample size is small. Figure 2 shows the
predicted vector fields by HNN and SGP, the respective root MSEs (RMSEs), and the
standard deviation to the SGP prediction for the pendulum data. Comparing the true
vector field (Figure 1) to its prediction (Figure 2) shows that SGP is more accurate
than HNN, especially when the sample size is small. The standard deviation for the
SGP prediction reflects the number of samples well; by comparing it to the RMSE, we
can see that the standard deviation provides a reasonable estimate of the confidence in
the prediction. Furthermore, and importantly, as shown in the RMSE in Figure 2, one observes that SGP has smaller
errors than HNN even in regions where there are no training samples.

Task 2: Simulating trajectories in out-of-distribution settings. Experimental results from Task 1 show that SGP can
adequately predict dynamics even in regions on the phase space where the training samples are extremely small. For
further discussion, we consider the problem of simulating trajectories in out-of-distribution settings. In the test phase,
we sampled 25 initial conditions with total energies uniformly distributed across a range [2.0,2.3] different from training
data. We compared true trajectories and their prediction based on the vector fields estimated by HNN and SGP, where
we generated the trajectories by using a numerical integrator, i.e., the Dormand–Prince method with adaptive time-
stepping, implemented in torchdiffeq [2, 3]. Each test trajectory was sampled at a frequency of 100 Hz for 15 seconds.
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Table 2: MSE and standard deviation for the predicted trajectories. Bold font indicates statistically significant differences
between SGP and HNN (a paired t-test) at level of P < 0.05.

Spring Pendulum

Sample size 40 60 100 40 60 100

HNN 2.183±1.119 1.151±1.047 0.399±0.072 1.473±0.422 1.331±0.276 0.334±0.074
SGP 0.302±0.414 0.165±0.043 0.127±0.072 0.651±0.384 0.269±0.062 0.216±0.024

(a) HNN (b) SGP

Figure 3: Simulation results for pendulum. The black and
red lines are the true and predicted trajectories, respectively.

Table 2 shows the MSE and standard deviation of the
trajectories predicted by HNN and SGP. We can see that
SGP dramatically improves performance than HNN when
the number of training samples is small. Figure 3 shows
the simulation results of the angle and momentum for the
pendulum. The results show that the prediction accuracy
of HNN degrades significantly over time, while SGP
tracks the true trajectory well. Therefore, SGP is a more
robust predictor in out-of-distribution settings than HNN.

4 Discussion

We have reviewed symplectic Gaussian process (SGP)
models that incorporate the theory of Hamiltonian me-
chanics and have evaluated the effectiveness of SGP ex-
perimentally. As also shown in the previous work [8], GP-based models can make accurate predictions even with noisy
and sparse data. In addition, this paper has shown that the SGP can adequately estimate the uncertainty in the prediction.
It is also interesting to note that the SGP is robust in out-of-distribution settings. There is still little research on modeling
and predicting dynamical systems in out-of-distribution settings, which needs to be addressed in the future. This is also
significant in practical situations because it is often more difficult to collect experimental data on phenomena with large
energy than those with small energy. Gaussian processes could be a promising approach to solving such problems.
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