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ABSTRACT

A domain decomposition approach for constructing physics-informed neural network (PINN) sur-
rogate models in parallel is investigated using a multi-block Cartesian mesh computational fluid
dynamics (CFD) framework called the Building Cube Method (BCM). The PINN is trained us-
ing the incompressible Navier-Stokes equations, and the results are compared with ANSYS Fluent
predictions. Information exchange between adjacent subdomains is realized by transferring neu-
ral network parameters. In addition, objects in the domain are handled by the immersed boundary
method. The results indicate that some parts of the flow field, such as the stagnation pressure, are
difficult to reproduce and may need to be explicitly constrained by loss functions. Based on the
results of the PINN predictions, we also consider overlapping PINN predictions and finite difference
solutions such that the PINN surrogate is constructed for the discrepancy between observations and
finite difference solutions in a data assimilation problem.
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1 Introduction

Deep neural networks have been used in various fields, including scientific/engineering computations. Among these,
the physics-informed neural network (PINN), which uses governing equations as constraints during training, has at-
tracted much attention in recent years. [1, 2].

Since the PINN can be trained only by the initial/boundary conditions and governing equations, it is a method for
obtaining approximate solutions to the governing equations, not just a surrogate model for approximating inputs and
outputs. It reminds us that the PINN can be used in the same way as traditional numerical methods such as finite
element, finite volume, and finite difference methods. In this context, a domain decomposition would be effective for
large-scale problems, as also proposed for the PINN [3, 4]. It is also pointed out that the decomposition of the PINN
alleviates the approximation problem in neural networks and improves the overall prediction accuracy [4].

We consider here an approach that uses a multi-block Cartesian mesh computational fluid dynamics (CFD) framework
(Building Cube Method, BCM) [5] to construct the PINN for each multi-block domain that is processed in parallel.
The mesh strategy of the BCM is shown schematically in Fig. 1, where multi-level subdomains called cubes contain
the same number of mesh cells inside, and the local mesh resolution is defined by the cube size. Utilizing the simple
data structure of the BCM, the PINN of each cube can be handled in the same way.

This paper attempts the PINN prediction for incompressible Navier-Stokes flows and compares the results with AN-
SYS Fluent [6]. We also consider overlapping PINN predictions and finite difference solutions such that the PINN
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surrogate is constructed for the discrepancy between observations and finite difference solutions in a data assimilation
problem. In the appendix, a more basic study using the Laplace equation in a simple three-dimensional domain is
presented, and the prediction accuracy is assessed by comparing series solutions, finite difference solutions, and PINN
solutions.

Cube

Cell

Figure 1: A schematic of mesh arrangement in the BCM framework.

2 Methodology

The PINN is composed of a fully connected network and a tanh activation function with spatial coordinates (x, y, z) as
input and flow variables (u, v, w, p, fx, fy, fz) as output. The minimization of the loss function, consisting of the resid-
ual and boundary conditions of the governing equations, is performed by the Adam optimizer. The three-dimensional
incompressible steady Navier-Stokes equations are considered to constrain the neural network. The mesh/data struc-
ture is based on the BCM framework in Fortran [5], and the PINN training in each cube is performed by PyTorch
using Forpy [7] as Fortran/Python interface. Cube-wise parallelism is considered in the BCM framework [8, 9], where
cubes can be assigned to available GPUs based on several criteria, including computational load. In this paper, parallel
computation is performed using two GPUs.

In constructing the PINN on the BCM framework, information exchange between neighboring cubes is performed
according to the extended PINN (XPINN) [3]. That is, the residuals and predictions of the governing equations are
connected at the domain boundary by including the corresponding loss functions. Since these quantities can be com-
puted from the network parameters of each subdomain, the network parameters are exchanged between neighboring
cubes. The BCM framework allows neighboring cubes to be half or twice the size of the cube (see Fig. 1 for a two-
dimensional case). To exchange the network parameters between cubes of different sizes, we define the interface’s
network parameters in the case of a small cube to a large cube. On the other hand, information exchange from a large
to a small cube can be done by entering the appropriate coordinates.

An object embedded in the domain (a sphere or circular cylinder in this study) is represented by the immersed boundary
method that constrains zero velocity at the object surface and adds a forcing term fx, fy, fz in the vicinity of the
object [10]. In addition, flow conservation is explicitly enforced by considering integral continuity planes in some
sections of the domain [11].

The overlap between PINN predictions and finite difference solutions is also investigated, taking advantage of the
ability of the PINN surrogate model constructed on the BCM framework. Aiming for the application to data assim-
ilation problems, the PINN surrogate is constructed for the discrepancy between observations and finite difference
solutions. That is, the flow variables u = (u, v, w, p)T are decomposed as u = uFDM + uPINN . By substituting
the decomposed variables into the governing equations and assuming the uFDM satisfies the governing equations
in discrete form, we obtain the equations of uPINN for the discrepancy between observations and finite difference
solutions. This treatment facilitates the application of boundary conditions because they can be given by finite differ-
ence solutions. This approach takes full advantage of the BCM framework, allowing easy access to finite difference
solutions.

3 Results

3.1 PINN on BCM framework

Figure 2(a) shows the computational domain consisting of a sphere of unit diameter and a box as the outer boundary.
The Dirichlet boundary condition of u = 1, v = w = 0 is set for the boundaries except for the sphere surface
(u = v = w = 0) and the outlet boundary. On the other hand, the pressure boundary condition of p = 0 is applied
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only to the outlet boundary. For comparison, the ANSYS Fluent analysis is also performed with the same geometry
and boundary conditions as the PINN prediction.

Figures 2(b)-(g) show the cross-sectional distributions around a sphere from the PINN and ANSYS Fluent predictions.
The Reynolds number is set to 50 in these cases. The learning points of the PINN prediction are shown in Fig. 2(f),
where the Cartesian mesh of the BCM framework with approximately 0.5 million points is used. The unstructured
mesh in Fig. 2(g) is used for the ANSYS Fluent prediction, which also has approximately 0.5 million points. The solid
lines in Fig. 2(b) and (d) indicate cube boundaries.

The overall velocity field is reproduced in the PINN prediction as shown in Fig. 2(b); however, there are discrepancies
between the PINN and ANSYS Fluent predictions, such as the non-smoothness in the cube interface in the front of the
sphere. In addition, the stagnation pressure is lower than that of ANSYS Fluent, as shown in Fig. 2(d), which should
be explicitly constrained in the loss function.

(b) (c)

(d) (e)

(f) (g)𝑢𝑢 = 1, 𝑣𝑣 = 𝑤𝑤 = 0
𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦 = 𝑓𝑓𝑧𝑧 = 0

𝑝𝑝 = 0

𝑢𝑢 = 𝑣𝑣 = 𝑤𝑤 = 0
𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦 = 𝑓𝑓𝑧𝑧 = 0

(a)

Figure 2: The computational domain consists of a sphere and outer boundary in (a). The comparison of PINN (b, d, f)
and ANSYS Fluent (c, e, g) predictions for streamwise velocity (b, c), pressure (d, e) and computational mesh (f, g)
around a sphere.

3.2 PINN superimposed on finite difference solution

As a data assimilation problem to be estimated by PINN surrogates, we consider the estimation of the macroscopic
drag coefficient due to a porous medium embedded in the wake of the flow field. Figure 3(a) shows a cross-section of
the computational domain with a unit-diameter circular cylinder embedded in a square duct. In this case, the Reynolds
number is set to 200. The porous medium is defined within the spherical region of 0.5 diameter shown in the wake of
the circular cylinder, as shown in the figure. The drag induced in the porous medium is modeled such that the drag
force is proportional to the flow velocity. The coefficient controlling the strength of the porous drag, as well as the
corresponding flow field, are estimated based on pseudo-observations extracted by thinning from the reference finite
difference simulation.

Figures 3(a)-(d) show the comparison of cross-sectional velocity distributions obtained by the PINN superimposed on
the finite difference solution and the reference finite difference solution. In this configuration, the velocity deficit and
pressure disturbance due to the porous region are estimated by the PINN. Figure 3(e) shows the history of the porous
parameter during PINN training. The porous parameter becomes close to the reference value of 10 in approximately
105 training steps.

4 Conclusions

In this study, we attempted the PINN prediction on the multi-block Cartesian mesh CFD framework. The PINN loss
function was modified such that the differences in terms of the governing equation residual and the prediction at the
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Figure 3: The comparison of streamwise velocity, where (a) the reference solution by the finite difference method,
(b) the finite difference solution without a spherical porous region, (c) PINN solution after estimation of the porous
region in the wake, (d) PINN superimposed on finite difference solution as a final estimate, (e) history of the porous
parameter during PINN training.

domain boundaries become small. The interface communication between neighboring subdomains was performed
by transferring neural network parameters. The results showed that the overall flow field around the sphere was
reproduced; however, there were discrepancies from the ANSYS Fluent prediction, especially regarding the stagnation
pressure. Based on the results of the PINN prediction, we also considered overlapping the PINN predictions and finite
difference solutions such that the PINN surrogate is constructed for the discrepancy between observations and finite
difference solutions in a data assimilation problem.
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Appendix: Accuracy Evaluation with Laplace Equation

The analysis of the Laplace equation is performed in a simple cubic domain (Fig. 4), and the prediction accu-
racy is evaluated by comparing series solutions, finite difference numerical solutions, and PINN solutions. The
boundary conditions of the normalized computational domain are set as ϕs(x, y, 0.5) = 1 on the top surface and
ϕs(±0.5, y, z) = ϕs(x,±0.5, z) = ϕs(x, y,−0.5) = 0 on other surfaces. In this case, the series solution of the
three-dimensional Laplace equation is as follows, considering up to 100 modes.

ϕs(x, y, z) =
16

π2

100∑
m,n=1

sinh γmnz

mn sinh γmn
sinmπx sinnπy (1)

where γmn =
√
(mπ)2 + (nπ)2. The finite difference numerical solution is obtained by the second-order central

difference method. In the following discussion, parametric studies are performed concerning the number of layers and
nodes in the network, the distribution of learning points (collocation points, residual points) used for evaluating the
residuals of the governing equations, etc. The accuracy of the trained PINN is evaluated by the mean square error
(MSE) from the series solution.

𝜙𝜙𝑠𝑠 𝑥𝑥, 𝑦𝑦, 0.5 = 1

𝜙𝜙𝑠𝑠 ±0.5,𝑦𝑦, 𝑧𝑧 = 0
𝜙𝜙𝑠𝑠 𝑥𝑥, ±0.5, 𝑧𝑧 = 0
𝜙𝜙𝑠𝑠 𝑥𝑥, 𝑦𝑦,−0.5 = 0

Figure 4: The computational domain for solving the Laplace equation.

Before studying the domain-decomposed PINN, the computation is performed in a single cubic computational domain.
Figure 5(a) shows the history of the loss function and MSE during training for finite difference and PINN predictions.
Figure 5(b) shows the influence of the number of layers and nodes in the network on the MSE. The MSE decreases
as the number of layers and nodes increases; however, the decrease becomes modest starting at approximately three
layers and 40 nodes. Figure 5(c) shows the influence of the weight wbc applied for the boundary condition loss. In this
example, it can be seen that the MSE becomes smaller when wbc is set to approximately 1000. Usually, the distribution
of learning points is based on a random number or a design of experiments that efficiently fills the space; however, the
case of using the Cartesian mesh of the BCM as learning points is investigated. Figure 5(d) shows the effect of the
learning point distribution. The MSE for an equally spaced Cartesian mesh (Cart363, etc.) becomes relatively small.
Fig. 6 shows the distribution of the series solution in (a) and the error distributions of the finite difference and PINN
solutions in (b) and (c), respectively. The magnitude of the MSE is smaller for the finite difference solution.

The results using the BCM framework are shown in Figs. 7 and 8, where the number of cubes is set to eight so
that each process handles four cubes. In addition to the boundary condition weight wbc, the XPINN considers the
interface weight wif between neighboring cubes. The effect of these weights is shown in Fig. 7(b). Figure 8 shows
the error distributions of the finite difference and PINN solutions in (b) and (c), respectively. The PINN solution in the
decomposed domain shows that the error is large near the domain boundaries. In addition, the overall error is more
significant than in the single domain case.
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Figure 5: The computation in the single domain, (a) loss functions, and MSE trends by varying (b) network structure,
(c) the boundary condition weight wbc and (d) the distribution of learning points.

(a) (b) (c)

Figure 6: Series solution distribution of the single domain in (a), and the error distributions for finite difference and
PINN solutions in (b) and (c), respectively.
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Figure 7: The computation in the decomposed domain, (a) loss functions, and MSE trends by varying (b) network
structures, (c) the boundary condition weight wbc and (d) the distribution of learning points, respectively.
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Figure 8: Series solution distribution of the decomposed domain in (a), and the error distributions for finite difference
and PINN solutions in (b) and (c), respectively.
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