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ABSTRACT

Nowadays, deep learning with the backpropagation learning rule (BP) is so popular because of its
high performance in scientific computing and others. Although the neuromorphic engineering attracts
attention accordingly, BP is not necessarily biologically plausible because it requires too sophisticated
information that propagates for a long distance across many layers to tune synaptic weights. Recently,
a biologically plausible learning rules such as feedback alignment (FA) has been proposed in order to
elucidate the possible synaptic learning rules used in the brain. Some previous benchmarks cautioned
not to use FA for deeply layered networks. However, the benchmarks, that mostly aimed at image
recognition tasks, only used the plain neural networks without convolutional layers or did not tune
hyper-parameters solely specialized for FA. As the optimal values of hyper-parameters for BP and FA
can be different, a principled training for FA, desirably with convolutional layers, is required. In fact,
although the convolutional neural networks (CNNGs), that need weight transport, are not necessarily
biologically plausible in its original form, some form of convolutional layers seems indispensable for
high performance. Here we show that biologically plausible CNNs and denoising autoencoders can be
successfully implemented with FA. Our benchmark demonstrated that the both models, accelerated by
GPUs for large scale datasets, can perform comparably with BP. These results suggest that the variety
of tasks the neuromorphic computing can solve is enriched by various types of biologically plausible
image transformations and their combination principally enables more sophisticated computation
such as stable diffusion models.
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1 Introduction

It is known that the currently-prevailing backpropagation learning rule (BP) for deep learning is not necessarily
biologically plausible and not implementable in the brain in its current form [6} [1, 2} 13} 14} 8 [10]. Then, what is the
synaptic learning rule the brain adopts? The simplest candidates such as the extreme learning machine (ELM) that
does not learn in the middle layers and the weight perturbation (WP) that randomly searches synaptic weights by
trial-and-error without explicit gradient information showed only limited performances [3]. For example, they could not
solve the reversal task or the XOR problem which mice and rats can solve. Although more sophisticated learning rules
such as the predictive coding are proposed, they tend to require complicated network structures [7].

The candidates we consider in this paper is the recently proposed Feedback Alignment (FA) [6] and its variant FA_EX-
100% [3]]. In a word, FA updates synaptic weights in the middle layers by a modified backpropagation rule where the
synaptic weights vector used to compute the synaptic update is simply replaced by a random vector B. Note that the
difference between BP and FA resides in how to learn the synaptic weights in the middle layers, but the learning rule
for the synaptic weights to the output layers is common for FA and BP. In FA_EX-100%, all the elements of B are
simply set to 1. It has been reported that FA and FA_EX-100% are robust against rule perturbations and biologically
inevitable noises [3]], presumably because the correct prediction error (e.g. dopaminergic signals) can calibrate in the
next step as a teaching signal if a perturbation creates a deviation.
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Table 1: classification performance of MNIST dataset trained with BP, FA and FA_EX-100% in which we tried both
fully-connected feedforward neural networks and convolutional neural networks (CNNs).

MNIST classification
Learning Rule fully-connected NNs ~ CNNs
Backpropagation (BP) 98.10% 98.95%
Feedback Alignment (FA) 97.69% 98.63%
FA_EX-100% 88.24% 90.17%

Table 2: classification performance of CIFAR10 dataset trained with BP, FA and FA_EX-100% in which we tried both
fully-connected feedforward neural networks and convolutional neural networks (CNNs).

CIFARI10 classification
Learning Rule fully-connected NNs  CNNs
Backpropagation (BP) 44.88% 60.46%
Feedback Alignment (FA) 41.24% 51.66%
FA_EX-100% 35.71% 27.48%

The candidates of the learning rule the brain implements can be narrowed down by comparing their performances.
There, as the performances can heavily depend on the tasks imposed, it is very important to test different tasks. Although
previous benchmarks of FA and its variants demonstrated fairly good performances for image recognition tasks, we
believe that there are still two missing parts to attain biological plausibility as described next [6} [8]].

First, the convolutional layer, that is essential for CNN’s high performance, was not used [, 2]. In a typical CNN,
the same 3 x 3 filter is shared by different neurons in the next layer, which requires a weight transportation. Thus,
apparently, the wiring for CNNs seems too complicated to be implemented in the brain [} [2]].

Second, the tasks that have high dimensional outputs, such as autoencoders, should also be tested. Such an "image
transformation task" is more difficult and can be a good benchmark. Furthermore, the variety of tasks the brain can
solve is enriched with biologically plausible image transformations. Apparently more difficult task can be occasionally
decomposed into several image transformation tasks. For example, image generation by stable diffusion can be regarded
as a repetition of denoising autocoders. Therefore it is important to include denoising autoencoders in a benchmark.

A previous work found that the "principled" hyper-parameter tuning is essential for solving more complicated tasks,
although only direct feedback alighment (DFA), that is a variant of FA, was used as a learning rule there [15 2, 14, 9]].
In this paper, we tried similar principled hyper-parameter tuning for the original FA as a learning rule [6} 3]]. We first
demonstrate that the FA-based CNN can be successfully implemented in a biologically plausible way. We next show
that the FA-based denoising autoencoder for MNIST dataset works comparably with BP. The both models were boosted
by GPUs for large scale datasets.

2 Materials and Methods

All the numerical simulation for the multi-layer feedforward neural networks in this paper was performed by custom-
made code using Python 3.9.13 and PyTorch 1.11.0+cul13, which implemented various learning rules for CNNs
and auto-encoders. All the Python codes used for this paper are available publicly at https://github.com/
keiji-miura/FA-based_CNN_Autoencoder,

2.1 Learning Rules: BP, FA and FA_EX-100%

BP is a conventional learning rule. BP updates synaptic weights by the usual backpropagation rule (both in the hidden
and output layers). The weight vector is updated according to the gradient vector to minimize the loss function. The
other learning rules are described in what follows, but, their difference only resides in the weight update rule in hidden
layers. That is, the weight update rule in the output layer is common for all the learning rules and, thus, it is the same as
that for BP.

FA updates synaptic weights in the hidden layers by the modified backpropagation rule in which the synap-
tic weights matrix W in the next layer, is replaced by a fixed ([-1,1]-uniformly) random vector B [6, 3.
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FA should finish learning successfully, for example, if W gets close to B by
the end of learning, consistently with the learning assumption (W = B).

Input image

FA_EX-100% updates synaptic weights in the same way as FA, but all the
elements of B matrix is set to 1 [3]. In this learning rule, all the synapses
are equal in the sense you do not need to assign random and heterogenous
B values for different synapses. This simple rule may further enhance
biological plausibility.

2.2 Implimenting FA with GPUs
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FA was implemented by modifying the backward function of Linear class
for linear layers in Pytorch. We believe that this rather minimal modifica-
tion of original Pytorch function enables us the efficient usage of GPUs.
We used the same codes for FA_EX-100%.
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2.3 FA-based Convolutional Layers with Truly Local Connections

We have solely used 5 x 5 filtering layer for CNNs. The CNN with
feedback alignment was implemented by representing the M x N sparse
weight matrix by the dense 25 x N matrix, where M and N represent the
number of neurons in the pre and post layers, respectively. Note that in
our feedback alignment-based CNN, the size of a single filter is 25 x IV,
instead of 25 x 1 for the conventional BP in which a 5 x 5 is shared by all
the post layer neurons. In this paper, in the spirit of biological plausibility
[1], we avoided to share the 5 x 5 weight and each post neuron has its own
5 x b filter. There, again, Pytorch Linear class was modified to create a
hand-made class for the convolutional layer based on FA. Of course this
implementation enabled us to utilize GPUs efficiently.
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3 Results

3.1 FA-based CNNs with Biologically Plausible Local Connections

We compared the classification performance of MNIST or CIFAR10 dataset
with backpropagation (BP), feedback alignment (FA) and FA_EX-100% in
which we tried both fully-connected feedforward neural networks and con-
volutional neural networks (CNNs) (TabldI| and |Z[) The difference in learn-
ing rules was summarized in Materials and Methods. The fully-connected
feedforward neural network, used for both MNIST and CIFARI10, had a
single hidden layer with 128 neurons followed by ReLU.
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Figure 1: Reconstruction of MNIST im-
ages by the fully-connected feedforward
neural network with a single hidden layer
We have tuned the structures of our FA-based CNNs and successfully im- With 200 neurons trained with backpropa-
proved their performances to the levels comparable with those of BP-based ~ gation (BP) or feedback alignment (FA).
CNNs. During that process, we observed that the structures optimized for

DFA in [5] also worked for FA basically, although those structures looked

rather uncommon for the conventional BP-based CNNs. The CNN structure we used for MNIST was "Input - Conv2d(6
filters, 5x5, tanh, padding) - Maxpooling(2x2, strides=2) - Conv2d(16 filters, 5x5, tanh, padding) - Maxpooling(2x2,
strides=2) - Fc(128, tanh) - Fc(10, softmax)". The CNN structure for CIFAR10 was "Input - Conv2d(32 filters, 5x3,
tanh, padding) - Avgpooling(3x3, strides=2) - Conv2d(64 filters, 5x5, tanh, padding) - Avgpooling(3x3, strides=2) -
Conv2d(64 filters, 5x5, tanh, padding) - Avgpooling(3x3, strides=2) - Fc(128, tanh) - Fc(10, softmax)".

3.2 FA-based Denoising Autoencoders

We next implemented the FA-based denoising autoencoder. Both the BP-based (=conventional) and FA-based autoen-
coders had a single hidden layer with 200 neurons followed by ReL.U. One example of the recovered data for the noise
amplitude o = 100 shown in Figure[I]demonstrates that not only BP-based but also FA-based denoising autoencoder
worked fairly well. Note that the original images had from 0 to 255 pixel values, on which the normal noise was added
independently on each pixel. The reconstruction error in binary-crossentropy was summarized in Table[3] We did not
show the performance of FA_EX-100% as its performance was much lower and it failed to reconstruct.
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Table 3: Mean squared reconstruction error of MNIST dataset with backpropagation (BP), feedback alignment (FA).
The fully-connected feedforward neural network had a single hidden layer with 200 neurons followed by ReLU.

MNIST reconstruction error
Sigma (noise amplitude) 0 100 255

Backpropagation (BP) 0.0816 0.105 0.157
Feedback Alignment (FA) 0.0880 0.112 0.164

4 Discussion

Although the overall performance for BP is higher than that of FA as expected, the FA-based CNNs showed the
performance that is comparable to the one for BP-based CNNs. The contribution of this paper resides in the GPU-
accelerated large scale benchmarks of truly localized CNNs and denoising autoencoders, which are successfully trained
with FA. These results suggest that the variety of tasks the neuromorphic computing can solve is enriched by various
types of biologically plausible image transformations and their combination principally enables more sophisticated
computation such as stable diffusion models.
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