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ABSTRACT

Structural mechanics is ubiquitous in the mechanical, aerospace, civil, and biological sciences. With
the advent of machine intelligence technology, it is imperative to study computational structural
mechanics from a machine intelligence standpoint. Helicopter rotor blades are simulated as cantilever
beams, and their complete mechanical behaviour understanding, such as deflections under various
loading conditions, is critical for rotorcraft mechanics. This investigation studies the deflection of
beams using state-of-the-art physics-informed neural networks (PINNs). An Euler-Bernoulli beam
theory-based beam deflections analytical solution is compared with the PINNs solution. A good
convergence is observed between PINNs and closed-form results. We would like to extend this
work to Timoshenko beam theory and other dynamical systems in computational structural dynamics
(CSD) to develop a digital twin for aerospace and mechanical sciences systems.

Keywords Physics Informed Neural Networks · Computational Structural Mechanics · Neural Networks · Solid
Mechanics · DeepXDE
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1 Introduction

Physics-informed neural networks (PINNs) have emerged
as a groundbreaking tool blending deep learning and phys-
ical modeling in the ever-evolving engineering and com-
putational science landscape. PINNs represent a novel
paradigm in which neural networks are trained to solve
supervised learning tasks while respecting the underly-
ing physical laws described by general nonlinear partial
differential equations1, 2. This fusion of physics-based
constraints with the versatility of neural networks opens
new avenues for solving complex engineering problems,
particularly in aerospace engineering.

This paper primarily focuses on applying PINNs in beam
mechanics, a fundamental area in structural engineer-
ing with profound implications in aerospace design and
analysis1-4. Traditionally approached through analytical
and numerical methods, beam mechanics stands to gain
significantly from integrating PINNs, offering enhanced
accuracy and efficiency in simulations5-6. The versatility
of PINNs, particularly in embedding physical laws into
the learning algorithm, ensures that the solutions are not
just data-driven but also explainable. This aspect is cru-
cial in aerospace engineering, where adherence to physical
realities is non-negotiable.

Rotorcraft researchers are continuously exploring novel
and computationally efficient algorithms to solve critical
aeromechanics problems, such as helicopter vibration re-
duction using smart trailing edge flaps at the rotor blades7.
Rotor blades can be simulated as cantilever beams for mod-
eling and simulations. There is a constant quest worldwide
to develop and integrate novel computational methods to
advance rotor mechanics further and computational struc-
tural mechanics.

The primary objective of this investigation is to explore
the potential of PINNs in various aspects of aerospace
engineering. From structural analysis and aeroelasticity to
thermal management and propulsion system optimization,
PINNs offer a versatile tool for tackling complex problems
that are otherwise challenging to solve with traditional
methods. In aerospace engineering, where the systems
are often subjected to extreme conditions and complex
interactions, PINNs can provide more accurate, efficient,
and robust solutions.

2 Introduction to the Idea of Physics
Informed Neural Networks (PINNs)

From a mathematical perspective, PINNs2 can be com-
prehensively appreciated by recognizing that the neural
network’s output is systematically amalgamated with the
residual of the system’s differential equation and corre-
sponding boundary conditions, resulting in a precise so-
lution. This formulation extends the foundational prin-
ciple of neural networks, wherein the input features are
linearly transformed through weights and biases, thereby
integrating the physical laws governing the system into the

learning architecture.1. It can be thought of two param-
eters, where the weight is simply the variable parameter,
which is what is associated with the input, while the biases
are constant values which is what the network adds to the
Input before passing it onto the Activation Function.∑

Weight ∗ Inputs+Bias

The key differentiation between the PINNs methodology
and conventional neural network paradigms principally
manifests within the framework of the loss function. In
PINNs, the composition of the loss function is intricately
expanded to include not only the Mean Squared Error
(MSE) loss, typical of standard neural networks but also
incorporates the physics loss, i.e. boundary conditions
loss and the derivative loss. This enriched loss function
undergoes an iterative optimization, a process elegantly
illustrated in Figure 1 below.

Figure 1: The structure of a Physics Informed Neural
Network

The network ingests spatial inputs x, applies a feedforward
neural network (FNN) with three hidden layers and 20 neu-
rons each, using the hyperbolic tangent activation function
and Glorot normal initialization. Along with the mean
squared error loss, the PINNs Network also takes into ac-
count the Boundary Conditions, the Governing Equation,
for which the Network uses the 1st, 2nd, and 3rd derivates
as well.

3 Physics Explanation

In this study, a cantilever beam, subjected to a uniform
distributed load (an analogous special load case of a fixed
wing or rotary wing), illustrated in Figure 2, was consid-
ered for the PINNs case-study 8. Over here, we take L as

Figure 2: Cantilever Beam with Uniformly Distributed
Load 8

the Length of the Beam. To get the governing equation,
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the bending moment in the beam at distance x (the point’s
location along the beam) from the fixed support can be
calculated as,

M =
−qL2

2
+ qLx− qx2

2
(1)

Where q is the uniform load intensity. The differential
equation v” for beam deflection according to the Euler-
Bernoulli theory is :

v′′ = −M(x)

EI
(2)

M(x) is the bending moment along the beam, E is our
Elastic Modulus, which indicates how stiff the beam is,
and I is the 2nd Moment of Inertia.The first equation can
be plugged into the beam deflection curve differential
equation8, and the combined equation is:

EIv′′ =
−qL2

2
+ qLx− qx2

2
(3)

Integrating the above equation and using the boundary
conditions, the angle of rotation v’ is calculated as follows:

v′ =
−qx

6EI
(3L2 − 3Lx+ x2) (4)

The following boundary conditions are considered:

v(0) = 0, v′(0) = 0 (5)

v′(L) =
−qL3

6EI
(6)

v(L) =
−qL4

8EI
(7)

Upon integration for the deflection equation with the
boundary conditions, which is the equation compared to
the real solution, the equation for the deflection of this
beam is:

v =
−qx2

24EI
(6L2 − 4Lx+ x2) (8)

4 Results and Discussion

In this study, a beam measuring 2.7 meters long was consid-
ered and is subjected to a uniform load of 60 kilo-Newtons,
Young’s Modulus is equal to:

200× 109Pa (9)

and Moment of Inertia is equal to:

0.000038929334 kg · m2 (10)

With the geometric parameters and PINNs formulation in
place, the exact solution and PINNs solution is illustrated
in Figure 3, where it can be observed that the PINNs net-
work reproduces exactly the same solution as the exact
solution of the Equation.

Before reaching the final result, a comprehensive paramet-
ric study is conducted to identify the best number of epochs
for convergence and different activation functions are also
explored, such as ReLU, tanh, ELU, Sigmoid, and Soft-
max. Various optimizers are also explored, such as Adam,
RMSProp, and Stochastic Gradient Descent, and different
learning rates are also investigated as part of the parametric
study. The result finally matched the exact Solution of the
Cantilever beam equation at 2000 epochs, using the Adam
optimizer and the tanh activation function with a learning
rate of 0.01 with three hidden layers in the Code.

It can be concluded that PINNs are capable of fast and
accurate computations for computational mechanics prob-
lems and would be relevant to aerospace structures, other
mechanical sciences geometric primitives, and industrial
systems. In the future, these systems are capable of being
at the forefront of the industry, and we can prove through
this research that any PINNs network will reproduce an
accurate solution for any system if calibrated properly.

Figure 3: The Graph of the PINNs Solution vs the Exact
Solution

Figure 4: Convergence of the PINN model over 20,000
training iterations, showing the decrease in training and
test losses with the L2 relative error as a test metric.
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In Figure 4, we present the convergence trends of the
Physics-Informed Neural Network (PINN) over 20,000
training steps (epochs). The blue line represents the train-
ing loss, and the orange line represents the test loss. Both
losses demonstrate a steep decline in the initial training
phase, followed by a plateau, indicating the model’s learn-
ing and subsequent stabilization. The green line represents
the test metric, which predicts how different the real values
are from the predicted values of the network, specifically
the L2 relative error, which is a normalized measure of the
model’s predictive accuracy across the test dataset6.

The L2 relative error is mathematically defined as:

L2 relative error =

√∑N
i=1(ypred,i − ytrue,i)2√∑N

i=1 y
2
true,i

(11)

where N is the number of samples in the test dataset, ypred,i
is the model’s prediction for the i-th sample, and ytrue,i
is the corresponding true value. The L2 relative error
quantifies the overall deviation of the model’s predictions
from the true values, normalized by the magnitude of the
true values to facilitate comparison across different scales.

In the context of Figure 4, the declining trend of the L2 rel-
ative error alongside the losses reflects the model’s increas-
ing accuracy. Notably, the green line exhibits fluctuations,
particularly in the latter half of the training process. These
fluctuations in the L2 relative error could be indicative of
variations in the model’s performance on the test dataset
at different iterations and warrant further investigation to
ensure the robustness and reliability of the predictions.

5 Conclusion

In this investigation, the state-of-the-art physics-informed
neural networks (PINNs) technique is studied for appli-
cations in computational mechanics, in particular beam
mechanics. A good convergence is observed between
PINNs, and closed-form results of the Euler-Bernoulli
theory-based beam deflection analytical solution. PINNs
solutions are also computationally efficient; the results
took an average of 19.5 seconds to come up with a solution
to the equation, proving that the Physics Informed Neural
Networks (PINNs) give effective and reasonably fast re-
sults for mechanical and aerospace systems with optimal
hyperparameters. We used 100 residual points for testing
the residual and fixed 32 residual points for training, which
proved effective, with 3.71e-08 being the best train loss and
2.72e-08 being the best test loss. Integration of data-driven
and physics is an ideal candidate to develop a digital twin
for aerospace and mechanical sciences systems. In future,
this work will be extended to Timoshenko beam theory
and other dynamical systems in computational structural
dynamics (CSD) and also develop an optimization routine
for automatic hyperparameter tuning.
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