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ABSTRACT

Pharmacometric models are pivotal across drug discovery and development, playing a decisive role
in determining the progression of candidate molecules. However, the derivation of mathematical
equations governing the system is a labor-intensive trial-and-error process, often constrained by tight
timelines. In this study, we introduce PKINNs, a novel purely data-driven pharmacokinetic-informed
neural network model. PKINNs efficiently discovers and models intrinsic multi-compartment-based
pharmacometric structures, reliably forecasting their derivatives. The resulting models are both
interpretable and explainable through Symbolic Regression methods. Our computational framework
demonstrates the potential for closed-form model discovery in pharmacometric applications, address-
ing the labor-intensive nature of traditional model derivation. With the increasing availability of large
datasets, this framework holds the potential to significantly enhance model-informed drug discovery.
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1 Introduction

Pharmacometrics, a vital tool in drug discovery, utilizes pharmacokinetic-pharmacodynamic (PKPD) models to employ
ordinary differential equations (ODEs) for describing the relationship between dose, concentration, intensity, and
response duration [8, 1, 20, 9]. These models are integral from early-phase target validation to optimizing lead compound
development, scaling compounds for human dose predictions, and forecasting adverse events in toxicology. In clinical
stage development, they aid in determining appropriate trial doses and predicting doses in untested populations, such as
pediatric trials. Pharmacometric modeling is increasingly influential in drug submissions and clinical trial applications
(CTAs)[21, 18, 16, 2, 11]. The landscape is evolving with the rise of large datasets and the growing use of artificial
intelligence (AI), with a keen interest in purely data driven approaches to model discovery.
Inverse problems widely arise across many areas in computational science [12, 19], where the challenge frequently
revolves around deducing a specific set of parameters based on certain observations or measurements. Traditional
approaches based on optimization methods have shown some promise in specific areas but typically require specific
domain knowledge and often have high computational costs [10, 5]. Physics informed neural networks (PINNs) have
shown great promise in being applied to the inverse problem [14, 22, 13] by incorporating prior knowledge about the
physics into the neural networks (NN). A limiting assumption used in the standard PINN studies is that the functional
form of the differential equation is known, which is a particular issue for problems requiring the identification of
relevant models. Very recent works have attempted to address this problem by combing the PINNs framework with
symbolic regression (SR) methods [6, 23]. The objective of this study is to discover an underlying mathematical
model based on pharmacometrics data, in a purely data driven way. To this end, we present a novel pharamacokinetic
informed neural network (PKINNs hereafter) which combines PINNs and SR, enabling the network to possess important
features of interpretability and generalizability, to discover intrinsic mechanistic models from noisy data in addition
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to estimating several unknown parameters. We demonstrate that our framework accurately and robustly predicts the
intrinsic derivatives of the underlying PK model and performs well in extrapolation prediction scenarios.

2 Methodology and Experiments
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Figure 1: Schematic of the PKINNs architecture.

Physics-informed Neural Network. The vanilla PINN approach [17] tackles differential equation based problems
by developing neural networks as substitute models for key quantities. It involves creating a loss function in relation
to the differential equation that characterizes the physical phenomena adjusting the neural network parameters to
minimize this loss function. The schematic of our PKINNs architecture is presented in Fig 1. The overall network
comprises of two sub-networks X-net and f -net having parameters θ and ϕ respectively. The main PINN, X-net,
predicts X = {X0, X1, X2} using a single input t. The auxillary network, f -net, takes in the input from X-net
and predicts f = {f1, f2, f3} which are unknown functions. The loss function to be minimized can be written as
Ltotal = λdataLdata + λODELODE + λICLIC , where λdata, λODE , λIC are weights for the data, ODE and IC
components of the loss function. A point worth noting is that this architecture is flexible and allows for unknown
parameters to be jointly optimized with the weights and biases of the network. We found that λdata = 1, λODE = 2,
λIC = 1 yielded the best results in our experiments. For further details on loss function, see Apx A.

Symbolic Regression. For symbolic regression we consider two different methods, PySR [7] and SINDy [4]. PySR
uses evolutionary optimization algorithms whereas SINDy uncovers concise governing equations by selecting prominent
candidate functions from a complex, high-dimensional nonlinear function space, using sparse regression techniques.
Data generation. We implemented the canonical pharmacokinetic two-compartment model with first-order absorption
and first-order elimination [3]
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where X0, X1, and X2 denote the drug quantities in the depot compartment, the central compartment, and the peripheral
compartment, respectively. Initially, X0 = 1 and both X1 and X2 are zero in all simulations. All simulations were run
to t = 10 to generate the PK datasets. We initialize the parameters as described in [15], for details about the parameters
please see Apx. B.1. We synthetically generate data sets by numerically solving Eq (1). To simulate a real world like
dataset we add Gaussian noise of different strengths to the simulated data. For this study we choose three levels of
Gaussian noise i) N (0, 0.005) ii) N (0, 0.01) iii) N (0, 0.02) which yields us three unique PK datasets which we refer
to as low noise, medium noise and high noise respectively.

Implementation and Training For X-net and f -net we choose two and three hidden layers respectively with each
layer having 100 neurons. The activation function used for all layers was tanh. We implemented the Adam optimizer
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with a learning rate of 10−2 for all models where each model was ran for 1000 epochs. We initialised the five free
parameters in Eq (1) as learnable parameters within the network and gave an initial guess of unity for all parameters.
We used all of the data upto t = 8 for training the models and kept the data from t = 8 − 10 for testing the quality
of the model predictions. We train all of the PKINNs models using 80% of the total data as training data (t < 8) and
keep the remaining 20% of the data as test data (t ≥ 8) to evaluate the PKINNs in an extrapolation scenario. Further
implementation details and hyperparameter choices can be found in Apx. A.2.

3 Results

The raw data and the model predictions for the drug concentrations are presented in Fig 2. We observe that PKINNs is
able to accurately model the drug concentration data, with profiles often lying on the raw data points. Interestingly,
we find that PKINNs is robust to the noise in the raw data irrespective of the noise strength which is demonstrated by
the ability extract the smooth drug conservation curves which are intrinsic to the multi-compartment PK model. To
further probe the ability of PKINNs to capture the underlying PK model, we compare the calculated derivatives against
the predicted derivatives from for each component which is presented in Fig 3. We observe a clear linear relationship
showing a very good agreement between the calculated and predicted derivatives for all drug concentration components
for the low and medium noise datasets (upper and middle panels of Fig 3). This characteristic is also observed in the
profiles obtained from of the high noise dataset, though we note a slight deviation from a pure linear relationship in
the third component dX2/dt vs f3 (bottom right panel of Fig 3). We find that this effect is not significant and overall
PKINNs accurately models and captures the intrinsic derivatives of the underlying PK model. We have demonstrated
that PKINNs performs very well in predicting the drug concentration curves for the training data, but a natural question
is how well the model performs in an extrapolation setting which is important for predictions tasks in Pharmacology.
The extrapolation drug concentration curves for PKINNs is represented as dashed lines in the shaded regions of Fig 2.
For the low and medium noise datasets we find that the extrapolations by PKINNs are faithful to the raw data with
PKINNs yielding smooth curves that qualitatively match the raw data. We find that in the case of high noise dataset,
the extrapolation prediction from PKINNs is not quite as good as with the lower noise models. To get a quantitative
measure of the extrapolation agreement , we measure the mean squared error between the raw data and the PKINNs
prediction which is given in Table 2. From the MSE values, we see that the best agreement between the raw data and
PKINNs happens for the low noise dataset 3 achieving loss values of order magnitude 10−5 for X0 and X1 whereas the
medium and high noise datasets loss values are often of order magnitude 10−4.
So far we have demonstrated that PKINNs accurately predicts the drug concentration curves very well capturing the
intrinsic derivatives of the datasets and is robust to the noise present in the data, however the internals of PKINNs model
remain a black box. We proceed to uncover the black box to provide an explainable model yielded by PKINNs using
techniques from Symbolic Regression, specifically PySR and SINDy. We apply both PySR and SINDy to the predicted
drug concentration data generated by PKINNs, the results are presented in Tab 1. We observe that the functional
forms for the drug concentration components predicted by PySR appear to be less sensitive to noise present in the data
compared to the functional forms predicted by SINDy. However we find that the functional forms predicted by SINDy
better match the functional form of the multi-compartment PK model used to generate the datasets which naturally
leads to a more interpretable model. Additionally, as SINDy retains a more faithful functional form we can more
easily interpret the values of the constants in context of the PK model compared to the functional forms yielded by
PySR. We note that both models do not capture the real intrinsic ODE but we find this is not entirely surprising as
noise was synthetically added to the datasets to give a more realistic data distribution, similar to what is collected from
experiments.

Table 1: Recovered expressions for the approximate ODE components f̃1, f̃2 and f̃3 from PKINNs using both PySR
and SINDy. Each row corresponds to the results for different levels of noise present in the raw data (low, medium and
high).

PySR SINDy

Noise f̃1 f̃2 f̃3 f̃1 f̃2 f̃3

Low −1.1X0 (−0.6 +X0)X0 −1.1X0 + 0.2X2 −X0 − 0.8X1 0.4X0 − 3.4X1 − 0.2X2 2.3X1 − 0.3X2

Medium −1.2X0 (−0.6 +X0)X0 0.2X0 −1.2X0 0.4X0 − 2.8X1 2.2X1 − 0.5X2

High −1.2X0 (−0.6 +X0)X0 +X1 0.2X0 −1.1X0 − 0.4X1 − 0.3X2 0.2X0 − 1.3X1 − 0.3X2 0.2X0 − 0.2X2

3While we have shown PKINNs performs well in a extrapolation prediction scenario, we stress that the model was not designed
specifically for this use case
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Low noise Medium noise High noise

Figure 2: Drug concentration curves for the datasets. Raw data is represented as filled circles and the PKINNs model
are solid lines, where the extrapolated region of the model is shown by dashed lines in the shaded region. Line colours:
X1 (black), X2 (green), X3 (red).

Figure 3: Comparison between the calculated derivatives and predicted derivatives of PKINNs. Low noise (upper
panels), medium noise (middle panels) and high noise (upper panels).

4 Impact statement

In this work we have developed a novel pharmacokinetic informed neural network model called PKINNs, which is
used to model drug concentration data yielded from pharmacokinetic experiments. We demonstrate that PKINNs
accurately and robustly predicts the intrinsic derivatives of the underlying PK model and performs well in extrapolation
predictions scenarios. We show that the dynamical models yielded by PKINNs are interpretable and explainable using
techniques from SR, namely PySR and SINDy, and find the functional forms from SINDy to well predict the intrinsic
PK model. Our goal is to enhance PKINNs to handle arbitrary compartment-based PKPD and complex quantitative
systems pharmacology (QSP) models. This extension is particularly impactful as manually deriving such models is
labor-intensive. The data-driven approach presented here explores function space, offering various parsimonious models
for practitioners to choose from. Even if an expert disagrees with the suggested system, the framework serves as a
valuable starting point for further derivation and selection in model-informed drug discovery.
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A PKINNs details

A.1 Loss function

Given a model that predicts X and f for a temporal coordinate t, where X is a vector function with three components
X0, X1, X2, the residuals for each of these components are calculated as follows:

res1 =
dX0

dt
− f1,

res2 =
dX1

dt
− f2,

res3 =
dX2

dt
− f3,

where fi are the predicted ODE components from PKINNs. These residuals represent the difference between the
derivatives of the model predictions and the predicted values. The ODE loss function can be formulated as the mean
square of these residuals:

LODE =
1

N

NODE∑
i=1

(
Nc∑
i=1

[
dXi−1

dt
− fi

])2

(2)

where NODE is the number of collocation points enforcing the ODE residual loss and Nc are the number of compart-
ments of the PK model.
The loss function of the initial condition is defined as the error between a constant initial condition vector and the
predicted values, it can be represented as:

LIC =

√√√√ Nc∑
i=0

(Xi −X ′
i)

2. (3)

The final component of the loss functions is the data loss term, defined as the mean squared error between the true
values X and the predicted values X′ from the model:

Ldata =
1

N

Ndata∑
i=0

(Xi −X ′)
2
. (4)

The total loss function combines all the separate components with component specific weighting, which can be written
as:

Ltotal = λdataLdata + λODELODE + λICLIC . (5)

Throughout our numerical experiments, we empirically found that λdata = 1, λODE = 2, λIC = 1 yielded the best
performance for PKINNs.
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A.2 Model training details

All of the deep learning models were implemented using KERAS in TENSORFLOW. The input dimension into X-net
was one and the output dimension was three, to match the number of variables within the PK model studied. The input
dimensions into f -net was set to four and the output dimension was set to three to match the number of ODEs of the PK
model. We experimented with a number of learning rates using the Adam optimizer but we found that 10−2 yielded us
the best performance. We also found that 1000 epochs was sufficient to achieve convergence of the PKINNs model
for the experiments we ran. Interestingly, we found a notable improvement in the model performance when we set
λODE = 2 from λODE = 1.

A.3 Extrapolation Error

We measure the mean squared error of the raw data against the predictions made by PKINNs. The results are given in in
Table 2.

Table 2: MSE of the PKINNs extrapolation prediction against the raw data for the different drug concentration
components X0, X1 and X2.

Noise Level MSE X0 MSE X1 MSE X2

Low 6.2× 10−5 1.9× 10−5 1.6× 10−4

Medium 3.1× 10−5 2.6× 10−4 5.7× 10−4

High 7.1× 10−4 1.7× 10−4 5.3× 10−4

B Pharmacology model details

B.1 Parameters

The model parameters are as follows: ka=1.14 represents the absorption rate constant; CL=3.57 is the elimination
clearance rate; Q=1.14 denotes the inter-compartment distribution; and V1=0.454, V2=2.87 are the central and peripheral
volumes of distribution, respectively.
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