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ABSTRACT

Synthetic asset price paths are crucial in various financial applications, such as risk management
and strategy testing [2, 10, 17]. In this paper, we present the application of a Denoising Diffusion
Probabilistic Model (DDPM) to generate synthetic asset price paths. The objective is not to exactly
replicate the original paths, but rather to capture their underlying dynamics, thereby creating plausible
yet unseen scenarios. Our methodology innovatively incorporates a discrete cosine transform, which
allows the DDPM to learn in the frequency domain, substantially improving its learning efficacy.
Unlike traditional approaches which involve predefined assumptions about the original paths’ price
dynamics, our approach avoids explicit model selection and calibration. Through both qualitative
and quantitative assessments, we show that the synthetic paths generated by our DDPM closely align
with the dynamics of the original paths, thereby affirming the effectiveness of our approach.

Keywords Asset price generation · deep generative models · denoising diffusion probabilistic model

1 Introduction

Traditional methods for creating synthetic asset prices typically involve selecting a model to describe price dynamics,
calibrating its parameters, and then using it to generate new data. This approach, however, comes with considerable
challenges. Designing a model that accurately reflect the complex nature of asset price movements is difficult.
Additionally, the calibration process is prone to inaccuracies, especially when calibration data is limited.

The recent advancement of deep generative models [7, 11, 13, 14, 19] has opened new possibilities for producing
synthetic asset prices. These models, based on neural networks, offer a ‘model-free’ approach as they do not rely on
predefined assumptions about the dynamics of the studied time series. Notable successes have been achieved with
generative adversarial networks (GANs) in time-series applications [6, 20]. However, GAN-based methods can be
difficult to train and may face stability and model collapse issues.

In this paper, we explore the Denoising Diffusion Probabilistic Model (DDPM) [9, 16, 18], which has been shown to
outperform GANs in image synthesis. Here, we focus on applying DDPM to synthesize asset price data. Meanwhile,
we introduce a novel preprocessing step involving discrete cosine transform, which allows the DDPM to learn in the
frequency domain and significantly enhances its ability to capture the dynamics of asset prices.

2 Denoising Diffusion Probabilistic Model

At its core, DDPM operates by incrementally introducing noise into a set of original data during a forward process and
subsequently learning to reverse this noise addition in a backward process. This enables the generation of new data
from Gaussian noise, that aligns with the same probability distribution as the original data [4].

In the forward process of DDPM, we assume the observed data points x0 are sampled from a probability distribution
q. This process employs a Markov chain [5] to incrementally add Gaussian noise N (0, I) to x0, following a variance
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schedule [15] β1, ..., βT , to generate a sequence x1, . . . ,xT . The transition probability is given by:

q(xt|x0) = N
(√

ᾱx0, (1− ᾱ)I
)
,

where αt = 1− βt, ᾱ =
∏t

s=1 αs. This closed-form representation enables direct sampling of xt from x0.

The reverse process attempts to counteract the noise addition at each timestep of the Markov chain. It is modeled by
a neural network parameterized by θ, which takes noisy inputs xt and timestep t, and learns to output approximated
Gaussian distributions

pθ(xt−1|xt) ∼ N (µθ(xt, t),Σθ(xt, t)),

effectively reversing the noise added in the transition from xt−1 to xt. For a well-trained network, the reconstructed
distribution pθ(x0) from the reverse process should match the original data distribution q(x0). By initializing noisy
inputs x̂T ∼ N (0, I), we can generate synthetic samples x̂0 from Gaussian noise.

Upon the successful training of the reverse process, the sampling procedure is straightforward. We start with a sample
drawn from N (0, I), representing the noisy data x̂T at the final timestep. Then, given x̂t, we can obtain x̂t−1 by
applying the learned reverse process as follows:

x̂t−1 = µθ(x̂t, t)x̂t + σtẑt,

where ẑt ∼ N (0, I). This process sequentially ‘denoises’ the data by reversing the Markov chain from t = T back to
t = 0. The final denoised output x̂0 is the synthetic data generated by the DDPM.

3 Synthetic Asset Price Paths Generation

Consider an asset price path {St}N−1
t=0 with length N and initial price S0. Our proposed method is to generate a

synthetic asset price path {Ŝt}N−1
t=0 that replicates the original path’s stochastic dynamics using the DDPM.

3.1 Preprocessing of Training Data

We test our model on two commonly used stochastic models for asset price dynamics: 1) Geometric Brownian Motion
(GBM) [3], and 2) the Heston model [8, 12]. For each stochastic process and each set of defining parameters, we
simulate M paths, {Si

t}N−1
t=0 , i = 1, . . . ,M , as our training set.

If we train DDPM on asset price paths directly, the resulting generated paths exhibit unnatural boundary spikes and
fail to mimic the original volatility dynamics due to the randomness of asset prices. Inspired by frequency transform
in signal processing, we tackle the issue by applying the discrete cosine transform (DCT) [1] to preprocess the raw
asset price data. Transforming the raw asset price paths into the frequency domain through DCT allows us to learn
the frequency patterns, the “signature” of the stochastic time-domain data. Specifically, the DDPM is able to learn the
low-frequency components representing the core patterns of the data, while ignoring the high-frequency components
which often correspond to values close to 0.

Note that the time series representing asset price paths in our study are not inherently periodic, which is often assumed
when applying DCT. To address this, we apply another idea, mirror reflection, which extends the time series by
appending the time-reversed paths to the end of the original. This technique ensures the extended paths do not introduce
abrupt transition, while achieving the desired periodicity with a period length of 2N and the condition S0 = S2N−1,
thereby making them suitable for DCT analysis.

3.2 Training

Training a DDPM entails a forward process where noise is systematically introduced and a reverse process where a
neural network learns to revert this noise addition. For this reverse process, we employ a U-Net architecture [9] which
processes inputs at various noise levels and their corresponding timesteps, and it learns to predict the noise added at
each forward step. Other model architectural configurations and hyperparameter choices for the DDPM are determined
by a thorough grid search.

3.3 Sampling & Post-processing

Using the trained DDPM, we can generate synthetic signals which we refer to as the “generated data”. Since we
performed DCT on the training set, we apply IDCT to the generated data. Also, recall that the asset price paths in
the training data are extended with mirror reflection, the time-domain representation of the generated data is actually
symmetrical. We select the “second half” of the generated paths as the final generated asset price paths.
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Figure 1: GBM - original paths (top) vs. generated paths (bottom). The different colours represent different price paths
and there is no correspondence between paths with the same colour.

Figure 2: GBM - log returns drift (top) and volatility (bottom) distributions.

4 Results

We first test the DDPM’s performance in generating asset price paths when the original paths’ dynamics are characterized
by GBM. To do this, we consider training sets simulated to follow GBM at three volatility scenarios: low volatility (σ =
10%), medium volatility (σ = 30%), and high volatility (σ = 50%). In all cases, we fix the initial price S0 = 100, time
to maturity T = 0.5, and the drift rate µ = 0.05.

In Figure 1, for each volatility scenario, we illustrate five randomly selected paths from the training set and five randomly
generated paths from the trained DDPM. A visual comparison indicates that across all three scenarios, the generated
paths closely mirror the dynamics of the original paths by reflecting similar ranges of volatility, with no apparent issues
at the left or right boundaries.

Next, we qualitatively compare the distributions of drift and volatility between the generated and original paths’ log
returns for each volatility scenario; see Figure 2. The drift distributions exhibit a high degree of congruence. The volatil-
ity distributions reveal underestimation in the generated paths compared to the original. Despite these discrepancies, the
general resemblance between the shapes of the distributions indicates that the DDPM effectively captures the inherent
randomness present in the original paths. Rather than generating a uniform set of paths characterized by identical drift
and volatility, the DDPM demonstrates its capability to produce a diverse array of paths. Each path exhibits unique
variations, yet collectively, they closely represent the underlying dynamics.

We then analyze DDPM’s capability in synthesizing asset price paths that capture the Heston model dynamics, which
introduces additional complexity by incorporating stochastic volatility. In alignment with our GBM setup, we construct
training sets representing three different volatility scenarios by altering the long-term variance θ while holding other
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Figure 3: Heston model - original paths (top) vs. generated paths (bottom). The different colours represent different
price paths and there is no correspondence between paths with the same colour.

Figure 4: Heston model - log returns drift (top) and volatility (bottom) distributions.

parameters constant. The θ values considered are 0.12, 0.32, and 0.52, corresponding to low, medium, and high volatility
scenarios respectively. Note that θ is a variance measure, hence

√
θ provides a volatility measure analogous σ in GBM.

We begin with a visual comparison of the original and generated paths for each volatility scenario (see Figure 3). We can
see that the original paths in the medium and high volatility scenarios (θ = 0.32 and θ = 0.52) demonstrate increased
volatility level through time. The generated paths mirror this dynamics effectively, with the paths at later timesteps
displaying a higher degree of variation.

Figure 4 shows a visual comparison between original and generated paths’ log returns drift and volatility distributions.
The drift distributions between the original and generated paths show no significant deviations. In line with our findings
from the GBM scenarios, the volatility distributions indicate a slight underestimation in the generated paths’ volatility.
Moreover, when θ = 0.12, the generated paths exhibit a volatility distribution with lighter tails compared to those in the
original paths. Despite these discrepancies, the DDPM overall successfully generates paths with a range of individual
drifts and volatilities, collectively forming distributions that closely mirror those of the original paths.

5 Conclusions

In this paper, we have introduced a novel method for generating synthetic financial asset price paths using the DDPM.
Our approach uniquely incorporates a DCT in preprocessing the training data. This technique shifts the learning process
from the time domain into the frequency domain, significantly enhancing the DDPM’s performance. Our method can
generate synthetic paths that resemble the dynamics of the original paths, eliminating the need for explicit assumptions
about the model form of the original paths’ dynamics and avoiding the traditional calibration process.
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